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We recall the concept of Baxterisation of an R-matrix, or of a monodromy
matrix, which corresponds to build, from one point in the R-matrix parameter
space, the algebraic variety where the spectral parameter(s) live. We show that
the Baxterisation, which amounts to studying the iteration of a birational trans-
formation, is a ``win�win'' strategy: it enables to discard efficiently the non-
integrable situations, focusing directly on the two interesting cases where the
algebraic varieties are of the so-called ``general type'' (finite order iteration) or
are Abelian varieties (infinite order iteration). We emphasize the heuristic example
of the sixteen vertex model and provide a complete description of the finite
order iterations situations for the Baxter model. We show that the Baxterisation
procedure can be introduced in much larger frameworks where the existence of
some underlying Yang�Baxter structure is not used: we Baxterise L-operators,
local quantum Lax matrices, and quantum Hamiltonians.

KEY WORDS: Baxterisation; Yang�Baxter equations; birational transforma-
tions; discrete dynamical systems; elliptic curves; lattice statistical mechanics;
integrable mappings; L-operator; local quantum Lax matrices.

1. INTRODUCTION

The Yang�Baxter equations are known to be a sufficient condition4 for the
commutation of transfer matrices. Moreover, it has been shown that the
commutation of transfer matrices necessarily yields a parameterization of
the R-matrices in term of algebraic varieties, (2) and that the set of inversion
relations, combined together with the geometric symmetries of the lattice,
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yield a set of birational symmetries5 of the parameter space of the model,
which are discrete symmetries of the Yang�Baxter equations. (4, 5) Generi-
cally this set of birational symmetries is an infinite set. Combining these
facts, one gets the following result: the Yang�Baxter integrability is
necessarily parameterized in term of algebraic varieties having a set of dis-
crete birational symmetries. An algebraic variety with an infinite set of
(birational) symmetries cannot be an algebraic variety of the so-called
``general type.''(2) In the following this set of discrete birational symmetries
will be mainly seen as generated by the iteration of a birational transforma-
tion, thus canonically associating a discrete dynamical system. This bira-
tional transformation can be of finite order, yielding a finite set of discrete
symmetries: many Yang�Baxter integrable models correspond to this finite
order situation(6) (see below: RSOS models, (7) integrable chiral Potts
model, (11) free-fermion models, tetrahedron relations, (12�14)...). However,
such birational transformations are generically (seen as a discrete dynami-
cal system) infinite order transformations. The iteration of one point under
such an infinite order birational transformation, yields an infinite number
of points which can actually ``densify'' an algebraic variety (elliptic curve,
Abelian surface,..., see refs. 15 and 16). One can thus deduce the algebraic
variety from the iteration of one point by this birational transformation.
This iteration procedure actually solves(4, 5) the so-called ``Baxterisation''
problem introduced by V. Jones in a framework of knot theory. The
Baxterisation problem corresponds to actually find, from one (isolated)
R-matrix, satisfying the Yang�Baxter equation, a whole family of R-matrices
depending on one, or several, ``spectral parameter(s)'' satisfying the
Yang�Baxter equation. In other words, the Baxterisation problem
corresponds to actually build, from one point in the R-matrix parameter
space (one Yang�Baxter integrable R-matrix), the algebraic variety where
the spectral parameter(s) live. All this is also true for higher dimensional
generalizations (tetrahedron relations, (13) ...) of the Yang�Baxter equations,
and for Baxterisation problems in dimensions greater than two.(17)

This paper will be illustrated by many examples of Baxterisation, in
particular, the heuristic example of the Baxterisation of the sixteen vertex
model which is, generically, non Yang�Baxter integrable, with a detailed
analysis of the finite order situations of the Baxter model. One will finally
show that the Baxterisation procedure can be introduced in much larger
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frameworks where the existence of some underlying Yang�Baxter structure
is not clear, and not used. For instance, we will give several examples of
Baxterisation of quantum Hamiltonians. We will also give several examples
of Baxterisation of differential operators, starting with the simple example
of the Baxterisation of the Toda L-operator, and then giving examples of
Baxterisation of other simple local quantum Lax matrices.

A large part of this paper corresponds to a review of previous works
by the authors, but we also provide new results,6 or we provide a new
point of view: for instance, Section 7 revisit already known examples (the
Baxter model, the t-J model, the Perk�Schultz model,...) but provides a
new algebraic geometry point of view (the quantum hamiltonian limit is
associated to the singular points of the parameter space, the equivalent of
the base points of an elliptic foliation) and also underlies the analysis of the
complexity of the iteration calculations (see Section 7.5). Therefore this
paper is not organized as a review paper but, rather, as a self contained
heuristic paper organized along the unifying concept of Baxterisation.

2. THE DISCRETE SYMMETRY GROUP ASSOCIATED WITH
THE BAXTERISATION PROCEDURE

Let us consider a quite general vertex model where one direction,
denoted as direction (1), is singled out. Pictorially this can be represented
as follows:

L

i k (1)

J
(1)

where i and k (corresponding to direction (1)) can take q values, while J
and L, in the other direction, take m values.

One can define a ``partial'' transposition on direction (1) denoted t1 .
The action of t1 on the R-matrix is given by:(15, 16)

(t1R) iJ
kL=RkJ

iL (2)
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6 In particular, the symmetric equation (48) is new, as well as its equivalence with the
biquadratic (49). The results of Section 6, providing polynomial representations of the multi-
plication of the shift by an integer and the associated finite order conditions, are new:
of course, the finite order conditions for the symmetric six vertex model, or the Baxter
model (then associated with the various RSOS models see for instance, ref. 7) correspond to
the ``rational cases'' already seen many years ago within the zero-field XXZ or XYZ
Hamiltonian models.(8�10) Section 8 also provides simple new results.



The R-matrix is a (qm)_(qm) matrix which can be seen as q2 blocks which
are m_m matrices:

R=\
A[1, 1] A[1, 2] A[1, 3] } } } A[1, q]

+ (3)

A[2, 1] A[2, 2] A[2, 3] } } } A[2, q]

A[3, 1] A[3, 2] A[3, 3] } } } A[3, q]

b b b . . . b
A[q, 1] A[q, 2] A[q, 3] } } } A[q, q]

where A[1, 1], A[1, 2],..., A[q, q] are m_m matrices. With these nota-
tions the partial transposition t1 amounts to permuting matrices A[:, ;]
and A[;, :], for all these block matrices. We use the same notations as in
refs. 18�20, that is, we introduce the two following transformations on
matrix R, the matrix inverse I� and the homogeneous matrix inverse I:

I� : R � R&1, I: R � det(R) } R&1 (4)

and we introduce the (generically) infinite order homogeneous, and inhomo-
geneous, transformations:

K=t1 } I, K� =t1 } I� (5)

The homogeneous inverse I is a polynomial transformation on each of the
entries mij of R, which associates to each mij its corresponding cofactor.
Transformation I� is an involution (I� 2=I), whereas I 2=(det(R))qm&2 } I,
where I denotes the identity transformation. Transformation t1 is also an
involution. The transformation K� is clearly a birational transformation on
the entries mij since its inverse transformation is I� } t which is obviously also
a rational transformation. Transformation K is a homogeneous polynomial
transformation on the entries mij of the R-matrix.

For such vertex models of lattice statistical mechanics, transformations
I� and t1 come from the inversion relations, (21, 22) and the geometrical sym-
metries of the lattice, in the framework of integrability and beyond
integrability. These involutions generate a discrete group of (birational )
automorphisms of the Yang�Baxter equations(4, 5) and their higher dimen-
sional generalizations.(17) They also generate a discrete group of (birational)
automorphisms of the algebraic varieties canonically associated with the
Yang�Baxter equations (or their higher dimensional generalizations).(2) In
the generic case where the birational transformation K� =t1 } I� is an infinite
order transformation, this set of birational automorphisms corresponds,
essentially, to the iteration of K� . When the infinite order transformation K�
densifies algebraic varieties, (16) one can deduce the equations of these
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algebraic varieties exactly and thus solve the so-called ``Baxterisation
problem.''

Terminology: In the following, we will call ``R-matrix'' the matrix we
iterate with (5), even if this ``R-matrix'' does not satisfy a Yang�Baxter rela-
tion. From now on, we will call ``Baxterisation'' the procedure which
amounts, for a given R-matrix, to iterating transformation (5), and finding
the algebraic variety which contains all the points of this iteration. A good
example corresponds, for instance, to get, from isolated R-matrices satisfying
the tetrahedron relations, (23) R-matrices also solutions of the tetrahedron
relations but now depending on spectral parameters.

3. BAXTERISATION: A WIN�WIN STRATEGY

When one ``Baxterises'' an R-matrix one can get three different kinds
of situations: either the orbits of (5) are chaotic, and therefore one cannot
expect any ``nice'' parametrization of the lattice model, or the orbits
correspond to algebraic varieties, and one can actually introduce some
``well-suited'' parametrization of the model associated to these algebraic
varieties, which will be extremely precious for any further analysis of the
model (analysis of the Yang�Baxter equations, or higher dimensional
generalizations, calculations of partition function per site,...), or, finally,
these orbits are finite orbits. When the iteration of (5) is infinite and yields
algebraic varieties, one can show that the algebraic varieties are not of the
so-called ``general-type''(2) (using the algebraic geometry terminology). For
instance, for algebraic surfaces, one can actually classify the various sur-
faces that are not of the ``general type:'' product of elliptic curves, Enriques
surfaces, Kummer surfaces, Abelian surfaces,... . When the orbits are finite
one is back to algebraic varieties of the ``general-type,'' which is a very
large set of different situations, quite hard to classify.(2) However, writing
for some integer N, the (projective) condition:

KN(R)=` } R (6)

actually gives the equations of the algebraic varieties corresponding to this
very condition (6). For instance, one can find the algebraic subvariety of
the chiral Potts model on which the higher genus Au-Yang�Baxter�Perk
solutions(24) live, as a finite order condition.(11)

To sum up: one has the following situations:

v Either the group is infinite, and one gets the ``precious'' parametriza-
tion of the model (even if it is a parametrization in terms of theta functions
of g variables,...).
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v The group is finite, and one actually gets the equations of the
algebraic varieties corresponding to this situation, writing condition (6).
This finite order situation is a ``gold mine'' as far as integrable situations
are concerned.(6, 11) Let us recall, for instance, the example of the tetra-
hedron solutions.(6, 13)

v The group is infinite, but the orbits, corresponding to the iteration
of (5), are chaotic: one does not have algebraic varieties7 and therefore one
does not have any Yang�Baxter structure.8 This situation corresponds to
an exponential growth of the iteration calculations.(25�27)

In every case the Baxterisation procedure helps to avoid the points of
the parameter space, corresponding to exponential growth of the calcula-
tions, where no Yang�Baxter relation can be expected, and enables to get
analytically the algebraic varieties corresponding to finite order iterations
(see Section 6.1 below), or enables to actually build the algebraic varieties
from the iteration of an infinite order birational transformation.

The Baxterisation procedure amounts to studying the iteration of a
(resp. several) birational (resp. polynomial) mapping which actually corre-
sponds to discrete symmetries of the parameter space of the models. It thus
provides a natural link between lattice statistical mechanics (field theory,...)
and the theory of discrete dynamical systems. Furthermore, it also provides
links with many other domains of mathematical physics, or mathematics.
For instance, as far as effective algebraic geometry, or even arithmetic, is
concerned, the Baxterisation provides many natural, and simple, examples
of Abelian varieties with an infinite set of rational points.(16, 28)

Let us first recall some well-known Yang�Baxter integrable situations
corresponding to finite order conditions.

3.1. Finite Order Conditions: Free-Fermion Conditions

The matrix R of the asymmetric eight-vertex model is of the form:

R=\
a
0
0
d

0
b
c
0

0
c$
b$
0

d $
0
0
a$+ (7)
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7 One may have algebraic subvarieties compatible with this situation, the subvarieties corre-
sponding to the two previous situations.

8 One can, however, try to characterize the ``complexity'' of this chaotic situation, calculating
the topological entropy, or the Arnold complexity, of the birational mapping (5) one
iterates.(25�27)



The free-fermion condition is:

aa$&dd $+bb$&cc$=0 (8)

A matrix of the form (7) may be brought, by similarity transformations, to
a block-diagonal form:

R=\R1

0
0

R2+ , with R1=\a
d

d $
a$+ and R2=\b

c
c$
b$+

If one denotes by $1=aa$&dd $, and by $2=bb$&cc$, the determinants of
the two blocks, then the homogeneous inverse I (polynomial transformation)
just reads:

a � a$ } $2 , a$ � a } $2 , d � &d } $2 , d $ � &d $ } $2
(9)

b � b$ } $1 , b$ � b } $1 , c � &c } $1 , c$ � &c$ } $1

and transformation t1 is given by: t1 : c W d $ and: d W c$. The condition (8)
is left invariant by t1 , I, and thus K=t1 } I. It is straightforward to see that
condition (8) is $1=&$2 and has the effect of linearizing I into:

a � a$, a$ � a, d � &d, d $ � &d $
(10)

b � &b$, b$ � &b, c � c, c$ � c$

The group, generated by I and t1 , is then realized by permutations of the
entries, mixed with changes of signs, and its orbits are thus finite. The
situation depicted here, namely an inversion relation that reduces, on some
algebraic subvariety, to permutation of the entries up to signs, also occurs
for free-fermion two-dimensional vertex models on a triangular lattice (see
Sacco and Wu in ref. 29), or for the three-dimensional vertex corresponding
to the Zamolodchikov�Baxter solution of the tetrahedron equations.(30�32)

Details can be found in ref. 6.
The finite order situations are extremely favorable for Yang�Baxter

integrability (chiral Potts model, (11) RSOS models, (7) tetrahedron solution, (6)

free-fermion solutions, free para-fermions,...). If one tries to find new Yang�
Baxter integrable models, one should certainly first try to write, systemati-
cally, all the algebraic subvarieties corresponding to these (projective) finite
order conditions. However, in this finite order case, one may say that the
``Baxterisation procedure'' does not work, or ``works to well:'' it is too degen-
erate. As a consequence, many remarkable results, and structures, occur
(polynomial representation of the natural integers together with their multi-
plication,...). These results, and structures, will be sketched in Section 6.1).
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3.2. The Group Is Infinite: Iterations Associated with the
Sixteen-Vertex Model

Let us now consider, with the example of the sixteen vertex model, (33)

the situation9 where K, or K� , is infinite order, thus yielding a non-trivial
Baxterisation.

In the case of 4_4 matrices (see Fig. 1 but with q=m=2), a par-
ticular permutation of the entries of the matrix, t1 , has been introduced in
the framework of the symmetries of the sixteen-vertex model.(34) The action
of two partial transpositions t1 , and t2 , on the R-matrix is given by:(34)

(t1R) ij
kl=Rkj

il , (t2R) ij
kl=R il

kj , t=t1 } t2 (11)

Transformation t is nothing but the matrix transposition: t commutes with
the matrix inversion I� . If one denotes mij the entries of the R-matrix, this
permutation corresponds to:

t1 : m13 W m31 , m14 W m32 , m23 W m41 , m24 W m42 (12)

which amounts to permuting the two 2_2 (off-diagonal) sub-matrices of
the 4_4 R-matrix. This transposition t1 corresponds to a partial transposi-
tion of one direction (say the horizontal one denoted by ``1,'' the other
transposition t2 corresponding to the other direction denoted by ``2'') of a
two-dimensional vertex model(4, 5, 34) (see Fig. 1).

Remarkably, the symmetry group, generated by the matrix inverse I�
and transformation t1 , or by the infinite generator K� =t1 } I� , has been
shown to yield elliptic curves(5, 34) which foliate the whole parameter space
of the sixteen vertex model. One should not confuse the integrability of the
symmetries of the parameter space of the sixteen vertex model (namely the
mappings considered here) and the Yang�Baxter integrability:(34) the
sixteen vertex model is not generically Yang�Baxter integrable.10

The integrability of the birational mapping K� , or, equivalently, of the
homogeneous (bi-)polynomial transformation K, is closely related to the
occurrence of remarkable factorization schemes.(15, 16) In order to see this,
let us consider a 4_4 matrix M0=R, and the successive matrices obtained
by iteration of transformation K=t1 } I, where t1 is defined by (12).
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9 Generic from the point of view of the discrete dynamical systems.
10 Using this elliptic parameterization, (34) one could imagine that the ``inversion trick,''(21, 22)

together with some ``well-suited'' analytical assumptions, could allow to actually get the
exact expression of the partition function per site of the sixteen vertex model beyond the
Yang�Baxter integrability. The model would be ``calculable'' without being Yang�Baxter
integrable: this remains an open question.



Similarly to the factorizations described in refs. 15 and 16, one has, for
arbitrary n, the following factorizations for the iterations of K:

Mn+2=
K(Mn+1)

f 2
n

, fn+2=
det(Mn+1)

f 3
n

(13)

K� t1
(Mn+2)=

K(Mn+2)
det(Mn+2)

=
Mn+3

fn+1 fn+3

where the fn 's are homogeneous polynomials in the entries of the initial
matrix M0 and the Mn 's are ``reduced matrices'' with homogeneous polyno-
mial entries.(15, 16)

Let us denote by :n the degree of the determinant of matrix Mn , and
by ;n the degree of polynomial fn , and let us introduce :(x), ;(x) which
are the generating functions of these :n 's, ;n 's:

:(x)= :
�

n=0

:n } xn, ;(x)= :
�

n=0

;n } xn (14)

From these factorizations one sees that one has a polynomial growth of the
iteration calculations (quadratic growth of the degrees). Actually, one can
easily get linear relations on the exponents :n , ;n and exact expressions for
their generating functions and for the :n 's and ;n 's:

:(x)=
4(1+3x2)

(1&x)3 , ;(x)=
4x

(1&x)3

(15)
:n=4(2n2+1), ;n=2n(n+1)

One has a whole hierarchy of recursions integrable, or compatible with
integrability.(15) For instance, one has:

fn f 2
n+3& fn+4 f 2

n+1

fn&1 fn+3 fn+4& fn fn+1 fn+5

=
fn+1 f 2

n+4& fn+5 f 2
n+2

fn fn+4 fn+5& fn+1 fn+2 fn+6

(16)

In an equivalent way, introducing the variable xn=det(K� n(R)) }
det(K� n+1(R)), one gets a hierarchy of recursions on the xn 's, (see ref. 15),
the simplest recursion reading:

xn+2&1
xn+1xn+2xn+3&1

=
xn+1&1

xn xn+1xn+2&1
} xnxn+1x2

n+2 (17)
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Equation (17) is equivalent to (16) since xn=( f 3
n } fn+2)�( f 3

n+1 } fn&1). It
can be seen that these recursions (16) and (17) are integrable ones.(15) For
this, one can introduce(18) a new (homogeneous) variable:

qn=
fn+1 } fn&1

f 2
n

then xn=
qn+1

qn
(18)

and end up, after some simplifications, with the following biquadratic rela-
tion between qn and qn+1 :

q2
n } q2

n+1++ } qn } qn+1+\ } (qn+qn+1)&*=0 (19)

which is clearly an integrable recursion.(15) In terms of the fn 's, the three
parameters \, * and +, read:

\=
f 1

2f4& f 2
2f3

f 3
1 f3& f 3

2

, *=
f2 f4& f1 f 3

2

f 3
1 f3& f 3

2

, +=
f 2

5& f 3
2f 1

3& f1
5f4+ f3 f 2

3

f2 f1 } ( f 3
1 f3& f 3

2)

(20)

It may also be interesting to introduce:

}=
4 } *++2

\
(21)

For the most general sixteen vertex models the expressions of \, * and +
are quite large in terms of its sixteen homogeneous parameters and, thus,
will not be given here. Let us just give an idea of these expressions in the
simple Baxter limit:

\=(ba+cd )2 } (ba&cd )2 } (a2+b2&c2&d 2)2, *=*1 } *2 } *3 } *4

*1=&(b2dc+b2a2+cda2&d 3c+c2d 2&c3d ),

*2=(b2dc+b2a2+cda2&d 3c&c2d 2&c3d )

*3=(b3a+b2a2+ba3&d 2ba&c2ba&c2d 2)

*4=(b3a&b2a2+ba3&d 2ba&c2ba+c2d 2) (22)

+=&b2a6+2a4b2c2&a4c2d 2&4a4b4+2a4d 2b2

&a2c4b2+2a2c4d 2+2a2c2b4+2a2c2d 4

+2d 4b2c2&a2b6+2a2b4d 2&a2d 4b2&c6d 2

+2c4d 2b2&4c4d 4&d 6c2&c2d 2b4
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The analysis of these factorization schemes thus provides a simple
complementary way of describing the Baxterisation and of finding the
parametrization of the model (here elliptic curves). The equivalence
between these elliptic curves (16), (17), (19), associated with the factoriza-
tion scheme, and other elliptic curves, more closely related to the elliptic
curves foliating the parameter space of the model, will be detailed in a
forthcoming section (see Section 5.3).

4. BAXTERISATION OF MONODROMY MATRICES:
2M_2M MATRICES

Let us now recall the more general vertex model (see Fig. 1 above),
where the singled out (horizontal) direction (1) corresponds to a
two-dimensional ``auxiliary space'' (that is q=2). The action of t1 , the ``par-
tial'' transposition on the horizontal direction (1), is given by:(34)

(t1R) iJ
kL=RkJ

iL that is t1 : \A
C

B
D+� \A

B
C
D+ (23)

where A, B, C and D are m_m matrices. It is a straight calculation to see
that the matrix inversion reads:

I� : \A
C

B
D+� \(A&B } D&1 } C )&1

(B&A } C&1 } D)&1

(C&D } B&1 } A)&1

(D&C } A&1 } B)&1+ (24)

This general framework enables to take into account the analysis of
N-site monodromy11 matrices(15) (take m=2N) of two-dimensional models,
as well as the analysis of d-dimensional 2d-state vertex models (take m=
2d&1). Let us just give here a pictorial representation of the two sites
(N=2) monodromy matrix of a two-dimensional model and of a three-
dimensional vertex model:

j $

j

l1 l2

k$

i k i R i $
(25)

j1 j2

k
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11 This terminology of monodromy matrices in the framework of integrable lattice statistical
mechanics, or quantum field theory, was introduced in the Quantum inverse Scattering
Theory developed by the St Petersburg's School (see for instance, ref. 35). This matrix with
operator entries is built as the product of local transition matrices along an auxiliary space,
and thus generalizes the monodromy matrices occurring in the theory of classical inverse
scattering.



Denoting s=2m the size of the matrices, the analysis of the corresponding
factorizations yields for arbitrary n, ``string-like'' factorizations.(15, 16) For
arbitrary m (equal to 2d&1 or not), the analysis of the factorizations of the
iterations of transformation K yields:

M1=K(M0), f1=det(M0), f2=
det(M1)

f s&4
1

, M2=
K(M1)

f s&5
1

f3=
det(M2)
f 7

1 } f s&4
2

, M3=
K(M2)

f 5
1 } f s&5

2

f4=
det(M3)

f 2(s&4)
1 } f 7

2 } f s&4
3

, M4=
K(M3)

f 2(s&5)
1 } f 5

2 } f s&5
3

f5=
det(M4)

f 8
1 } f 2(s&4)

2 } f 7
3 } f s&4

4

} } }

and, for arbitrary n, the following `string-like'' factorizations:

K(Mn)=Mn+1 } f s&5
n } f 5

n&1 } f 2(s&5)
n&2 } f 6

n&3 } f 2(s&5)
n&4 } f 6

n&5 } } }
(26)

det(Mn)=fn+1 } f s&4
n } f 7

n&1 } f 2(&s&4)
n&2 } f 8

n&3 } f 2(s&4)
n&4 } f 8

n&5 } f 2(s&4)
n&6 } } }

One easily gets from (26):

:(x)=
s

1+x
+s2 x(1+x2)

(1+x)(1&x)4 , ;(x)=
sx

(1&x)3

(27)

:n=
s
3

(2n+1)(2n2+2n+3), ;n=
s
2

n(n+1)

The :n 's and ;n 's are, respectively, cubic and quadratic functions of n.

4.1. Towards Bethe Ansatz: The Propagation Property

This polynomial growth of the calculation can be understood as
follows. One of the ``keys'' to the Bethe Ansatz is the existence (see equa-
tions (B.10), (B.11a) in ref. 36) of vectors which are pure tensor products
(of the form v�w) and which R maps onto pure tensor product v$�w$.
This key property12 was called propagation property by R. J. Baxter, and
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Baxter model this non trivial relation corresponds to some intertwining relation of the
product of two theta functions, which is nothing but the quadratic Frobenius relations on
theta functions. (37, 38)



corresponds to the existence of a Zamolodchikov algebra(39) for the Baxter
model.13 This ``propagation'' equation reads here:

R(u�V )=+ } u$�V$ with u=\ 1
p+ , u$=\ 1

p$+ (28)

vectors V and V$ having m coordinates. One can rewrite (28) under the
form:

\A
C

B
D+\

V
p } V+=+ } \ V$

p$ } V$+ (29)

Actually, for all the vertex models for which transposition t1 can be
represented as (23) (namely monodromy matrices, or d-dimensional vertex
models, with ``arrows'' taking two colors,...), one can associate an algebraic
curve of equation:

det(Ap$&C&Dp+ pp$B)=0 (30)

which form is invariant by t1 , I� and thus by K� or K� 2. As a byproduct this
provides a canonical Jacobian variety for such vertex models, namely the
Jacobian variety associated with curve (30). This procedure, which
associates with an R-matrix the algebraic curve (30), originates from a key
``propagation'' relation (28), closely related to the action of the birational
transformations K� .(34)

Thus one sees that, even when the Baxterisation procedure does not
yield (elliptic or rational) curves but yields higher dimensional Abelian
varieties, the occurrence of polynomial growth of the iteration calculations
can thus be seen as a simple ``detector'' of such quite involved
parameterizations.
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13 The existence of a Zamolodchikov algebra is, at first sight, a sufficient condition for the
Yang�Baxter equations to be verified. Theta functions of g variables do satisfy quadratic
Frobenius relations, (38) consequently yielding a Zamolodchikov algebra parameterized in term
of theta functions of several variables. However this Zamolodchikov algebra is apparently
not sufficient for Yang�Baxter equations to be satisfied.(40) For the corresponding vertex
models (g replicas of the Baxter model coupled together) it may be possible that the
associated R-matrices, which are parameterized in term of theta functions of several
variables (and thus correspond to a ``nice'' Baxterisation), do not satisfy the Yang�Baxter
equations, but could be such that the partition function per site could be calculated exactly
using the ``inversion trick:'' this remains an open question.



4.2. Continuous Symmetries Generalizing the Gauge
Symmetries

The birational transformation K� =t1 } I� can be represented as follows:

K� =t1 } I� : \A
C

B
D+� \A$

C$
B$
D$+

=\(A&B } D&1 } C)&1

(C&D } B&1 } A)&1

(B&A } C&1 } D)&1

D&C } A&1 } B)&1 + (31)

Let us introduce the following SL(m)_SL(m) transformation G(m):

G(m): \A
C

B
D+� \G (m)

L } A } G (m)
R

G (m)
L } C } G (m)

R

G (m)
L } B } G (m)

R

G (m)
L } D } G (m)

R +
where G (m)

L and G (m)
R are two SL(m) matrices. It is straightforward to see

that:

K� \G (m)
L } A } G (m)

R

G (m)
L } C } G(m)

R

G (m)
L } B } G (m)

R

G (m)
L } D } G (m)

R +
=\(G (m)

R )&1 } A$ } (G (m)
L )&1

(G (m)
R )&1 } C$ } (G (m)

L )&1

(G (m)
R )&1 } B$ } (G (m)

L )&1

(G (m)
R )&1 } D$ } (G (m)

L )&1+ (32)

and, in a second step, that:

G(m)(K� 2(R))=K� 2(G(m)(R)) (33)

In fact, such a result is not specific of a two-dimensional auxiliary space.
Recalling the (qm)_(qm) R-matrix (3), and the associated partial trans-
position t1 , and introducing a SL(m)_SL(m) transformation G(m) which
transforms each m_m block A[:, ;] into GL } A[:, ;] } GR , one recovers,
again, relation (33). Of course there is nothing specific with t1 , and one
finds the same results for the partial transposition t2 corresponding to the
vertical line, with this time, a commutation between K� 2 and a SL(q)_
SL(q) transformation G(q). Since t2=t1 } t, and since t commutes with I� ,
one immediately gets14 with obvious notations the following SL(q)_
SL(m)_SL(q)_SL(m) symmetry for K� 2:

K� 2(G (q)
L �G (m)

L } R } G (q)
R �G (m)

R )=G (q)
L �G (m)

L } (K� 2(R)) } G (q)
R �G (m)

R (34)
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14 Similarly for a three-dimensional 23_23 R-matrix one gets easily K� 2(g&1
1L �g&1

2L �g&1
3L }

R3D } g1R �g2R�g3R)= g&1
1L �g&1

2L �g&1
3L } K� 2(R3D) } g1R�g2R �g3R .



This symmetry drastically generalizes the well-known gauge symmetries
introduced by Wegner(41) which correspond to similarity transformations
G(q)

R =(G (q)
L )&1 and G (m)

R =(G (m)
L )&1. Let us note that this kind of sym-

metries, generalizing the gauge transformations, have actually been used
(inhomogeneous gauge transformations in a Yang�Baxter framework) by
R. J. Baxter to map the Baxter model onto an inhomogeneous six vertex
model, in order to build the Bethe Ansatz of the Baxter model.(36)

5. SIXTEEN VERTEX MODEL AND BAXTER MODEL:
REVISITING THE ELLIPTIC CURVES

Considering the (non-generically Yang�Baxter integrable) sixteen ver-
tex model, one finds that a canonical parameterization in terms of elliptic
curves occurs in the sixteen homogeneous parameter space of the model.(34)

This canonical parameterization is obtained15 from the Baxterisation proce-
dure.(34) In fact several elliptic curves (associated with different ``spaces'')
occur: one corresponding to the factorization analysis of Section 3.2,
another from the propagation property (28), and another one from the
iteration of the birational transformation K� 2 in the sixteen homogeneous
parameter space of the model.(34) Let us analyse the relations between these
various elliptic curves and show that they actually identify.

Let us recall the results and notations concerning the sixteen vertex
model.(34) Let us use the following notation for R:

R=\
a1

a3

c1

c3

a2

a4

c2

c4

b1

b3

d1

d3

b2

b4

d2

d4
+ (35)

5.1. Propagation Property for the Sixteen Vertex Model and
the Baxter Model

Considering the sixteen vertex model (35), the propagation relation
(28), for m=2, becomes16 R(vn �wn)=+ } vn+1�wn+1 where:

vn=\ 1
pn + , wn=\ 1

p~ n+ , vn+1=\ 1
pn+1+ , wn+1=\ 1

p~ n+1+ (36)
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15 In the Yang�Baxter integrable subcase, the Baxter model, this elliptic parameterization,
deduced from the Baxterisation procedure, is actually the elliptic parameterization intro-
duced by R. J. Baxter to solve the Baxter model.(42)

16 See the propagation property for the Baxter model, namely (B.10), (B.11a) in ref. 36.



and yields, by eliminations of pn , pn+1 (resp. p~ n , p~ n+1), the two biquadratic
relations:(34)

l4+l11 } pn&l12 } pn+1+l2 } p2
n+l1 } p2

n+1&(l9+l18) } pn } pn+1

&l13 } p2
n } pn+1+l10 } pn } p2

n+1+l3 } p2
n } p2

n+1=0 (37)

l7+l16 } p~ n&l15 } p~ n+1+l8 } p~ 2
n+l5 } p~ 2

n+1&(l9&l18) } p~ n } p~ n+1

&l17 } p~ 2
n } p~ n+1+l14 } p~ n p~ 2

n+1+l6 p~ 2
n p~ 2

n+1=0 (38)

where the li 's are quadratic expressions of the entries (35) of the R-matrix.(34)

These two biquadratics can be seen as:

p2 q2

[ p$2, p$, 1] } R (1)
3 } _ p &=0 and [q$2, q$, 1] } R (2)

3 } _ q &=0

1 1

where the two 3_3 matrices read:

l1 l10 l3

R (1)
3 =_&l12 &(l9+l18) &l13& and

l4 l11 l2

l5 l14 l6

R (2)
3 =_&l15 &(l9&l18) &l17& (39)

l7 l16 l8

In the Baxter limit these two matrices reduce to a only one 3_3 matrix:

Jx+Jy 0 Jx&Jy

Rbax
3 =_ 0 4Jz 0 & (40)

Jx&Jy 0 Jx+Jy

where Jx , Jy , and Jz are the three well-known quadratic expressions of the
XYZ Hamiltonian:

Jx=a } b+c } d, Jy=a } b&c } d, Jz=
a2+b2&c2&d 2

2
(41)

Some K� 2-invariants can be deduced from SL(3) invariants of the two
3_3 matrices (39), namely a quadratic expression in the li 's (for R (1)

3 for
instance) l1 } l2+l3 } l4&l10 } l11&l12 } l13+(l9+l18)2, a cubic (in the li 's)
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which is nothing but their determinant, and a quartic one. Eighteen
(algebraically related) quadratic polynomials ( p1 ,..., p18) which are linear
combinations of the l i 's, and transform very simply under t1 and I, have
been found.(34) Introducing the ratio of these covariants p i 's, one gets
invariants of K� 2 thus giving the equations of the elliptic curves: the elliptic
curves are given by the intersection of fourteen quadrics.(34)

5.2. Reduction of a Sixteen Vertex Model to a K2-Effective
Baxter Model

From (34) for q=m=2, one deduces a sl2_sl2_sl2_sl2 symmetry
on the sixteen vertex model.(34) Furthermore, the R-matrix of the sixteen
vertex can actually be decomposed17 as:

Rsixteen= g&1
1L �g&1

2L } RBaxter } g1R �g2R (42)

where RBaxter denotes the R-matrix of an ``effective'' Baxter model and g1R ,
g2R , g1L , g2L are 2_2 matrices. The sixteen homogeneous parameters of
the sixteen vertex are thus decomposed into four homogeneous parameters
of an ``effective'' Baxter model and four times three parameters (four homo-
geneous parameters) of the various 2_2 matrices: g1R , g2R , g1L , g2L . Using
this very decomposition (42), and the previous symmetry relation (34) for
q=m=2, one actually gets:

K� 2(Rsixteen)= g&1
1L �g&1

2L } K� 2(RBaxter) } g1R �g2R (43)

The matrices g1R , g2R , g1L , g2L of the decomposition (42) can thus be seen
as constants of motion of the iteration of K� 2.

If RBaxter belongs to a ``special'' manifold, or algebraic variety, Rsixteen ,
given by (42), will also belong to a ``special'' manifold, or algebraic variety:
for instance, if RBaxter belongs to a finite order algebraic variety for the
iteration of K� 2, namely K� 2N(RBaxter)=' } RBaxter , then Rsixteen will also belong
to a finite order algebraic variety for the iteration of K� 2: K� 2N(Rsixteen)=
' } Rsixteen . If RBaxter belongs to a critical variety then Rsixteen given by (42)
should also belong to a critical variety. This last result does not come from
the fact that g1L , g2L , g1R , g2R are symmetries of the partition function
(they are not, except in the gauge case: g1L= g1R with g2L= g2R): they are
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17 Finding, for a given R-matrix of the sixteen vertex model, the elements of this decomposi-
tion, namely RBaxter and g1R , g2R , g1L , g2L , is an extremely difficult process that will not
be detailed here. Conversely, one can show easily that the matrices of the form (42) span
the whole space of 4_4 matrices.



symmetries of K� 2 which is a symmetry of the critical manifolds. Therefore
they are symmetries of the critical manifolds even if they are not symmetries
of the partition function.

A decomposition, like (42), is closely associated to the parametrization
of the sixteen vertex model in elliptic curves:(34) given RBaxter , g1L , g2L , g1R

and g2R , one can easily deduce Rsixteen . Conversely, given Rsixteen , it is
extremely difficult to get RBaxter , g1L , g2L , g1R and g2R , however, and
remarkably, it is quite simple to get RBaxter . Since g1L , g1R , g2L , g2R are
K� 2-invariants, one can try to relate, directly, the ``K� 2-effective'' covariants
Jx , Jy and Jz with the K� 2-invariants related to the recursion on the xn 's or
the qn 's, namely \, +, *, or } (see (19), (21)). In terms of these well-suited
algebraic covariants, the previous parameters read:

\=4J 2
z J 2

xJ 2
y , +=&2 } (J 2

z J 2
x+J 2

z J 2
y+J 2

xJ 2
y), }=4 } (J 2

z+J 2
x+J 2

y)

*=&(J 2
z J 2

x+J 2
z J 2

y+J 2
xJ 2

y)2+4 } (J 2
z+J 2

x+J 2
y) } J 2

z J 2
xJ 2

y (44)

One immediately recognizes some symmetric polynomials of J 2
x , J 2

y , J 2
z .

Therefore it is easy to nee that the Jx , Jy , Jz can be straightforwardly
obtained from a cubic polynomial P(u):

P(u)=4 } u3&} } u2&2 } + } u&\=4 } (u&J 2
x) } (u&J 2

y) } (u&J 2
z ) (45)

This is remarkable, because trying to get Jx , Jy , Jz , by brute-force elimina-
tions from (42), yields huge calculations. In fact, one only gets, from (45),
the squares of the Jx , Jy , Jz , but the critical manifold, as well as the finite
order conditions (see below), only depend on J 2

x , J 2
y , J 2

z .
The elliptic curves corresponding to the orbits of K� 2 in the parameter

space of the sixteen vertex model, as well as the two biquadratics (37)
and (38), together with the elliptic curves associated to the factorization
analysis of Section 3.2 (like (16), (17) or (19)), share the same modular
invariant j, which can be simplify written, for the sixteen vertex model, in
terms of the ``effective'' J 2

x , J 2
y , J 2

z deduced from (45) (using of course (20)):

j=256
(J 4

x+J 4
y+J 4

z&J 2
z J 2

y&J 2
z J 2

x&J 2
yJ 2

x)3

(J 2
y&J 2

x)2 (J 2
z&J 2

x)2 (J 2
z&J 2

y)2 (46)

Based on the classical theory of algebraic invariants (see ref. 43) an
irreducible basis of algebraic invariants have been built for the sixteen vertex
model:(44�53) these algebraic invariants take into account the weak-graph
``gauge'' (similarity...) sl2_sl2 symmetries of the sixteen vertex model.(41)

Beyond these similarity symmetries, inhomogeneous gauge transformations
were even considered, thus introducing much larger set of sl2_sl2_sl2_sl2
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symmetries.(44�53) The modular invariant j is, of course, invariant under the
previous sl2_sl2 similarity symmetries, but it is actually also invariant(34)

under the much larger set of sl2_sl2_sl2_sl2 symmetries18 described in
Section 4.2. Furthermore this modular invariant is also invariant under the
infinite discrete set of birational transformations K� N, corresponding to the
Baxterisation. It is thus invariant under a continuous group of linear trans-
formations sl2_sl2_sl2_sl2 and, in the same time, under an infinite dis-
crete group of non-linear transformations. In a forthcoming Section 6 it
will also be seen to be invariant under another remarkable infinite set of
(non-invertible) polynomial transformations. The modular invariant j thus
``encapsulates'' all the symmetries of the sixteen vertex model. It can be
calculated directly in terms of the +, \ and *:

j=&
(+4+8+2*+16*2+24\2+)3

\4(+4*+8+2*2+16*3+\2+3+36\2+*+27\4)
(47)

For the sixteen vertex model, using (20), the modular invariant j becomes,
in terms of the sixteen homogeneous parameters of the model, the ratio of
two ``huge'' homogeneous polynomials.

5.3. Biquadratic (19) Versus Biquadratic (35)

The Baxterisation process is associated with the iteration of K� , or,
rather, K� 2. Since, as far as K� 2 is concerned, one can reduce a sixteen vertex
model to an ``effective'' Baxter model, one can try to revisit, directly, the
relation between the biquadratic (19) and the ``propagation curve'' (37)
for the Baxter model. For the Baxter model, relation (19) becomes the
biquadratic:

q2
nq2

n+1&2 } (J 2
z J 2

x+J 2
z J 2

y+J 2
xJ 2

y) } qn } qn+1+4J 2
z J 2

xJ 2
y } (qn+qn+1)

+(J 2
z J 2

x+J 2
z J 2

y+J 2
xJ 2

y)2&4 } (J 2
z+J 2

x+J 2
y) } J 2

z J 2
x J 2

y=0 (48)

which should be compared with the ``propagation'' biquadratics (37) of the
Baxter model:(36, 42)

11( pn , pn+1)=(Jx&Jy) } ( p2
n p2

n+1+1)&(Jx+Jy) } ( p2
n+ p2

n+1)

+4 } Jz } pn } pn+1

=( p2
n&1) } ( p2

n+1&1) } Jx&( p2
n+1) } ( p2

n+1+1) } Jy

+4 } Jz } pn } pn+1=0 (49)
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18 These symmetries are not invariance of the partition function, like the previous similarity
symmetries, (41, 44) but only symmetries of the parameter space.



It is known that simple ``propagation'' curves, like (49), have the
following elliptic parameterization:(36, 42)

pn=sn(un , k), pn+1=sn(un+1 , k), where un+1=un\* (50)

where sn(u, k) denotes the elliptic sinus of modulus k and * now denotes
some ``shift.'' The modulus(54) k is equivalent to the following modulus
which has a very simple expression in terms of J 2

x , J 2
y and J 2

z :

M=
J 2

z&J 2
y

J 2
x&J 2

z

(51)

At first sight it seems that one has two different elliptic curves
(biquadratics), namely (48) which is symmetric under permutations of J 2

x ,
J2

y and J 2
z , and (49) which breaks this symmetry. Let us also consider the

same ``propagation curve'' (49), but now between pn+1 and pn+2 , and let
us eliminate pn+1 between these two algebraic curves. One gets, after the
factorization of ( pn& pn+1)2:

12( pn , pn+2)=2J 2
z } (J 2

y&J 2
x) } ( p2

n p2
n+2+1)+2J 2

x J 2
y } ( p2

n+ p2
n+2)

+4 } (J 2
x J 2

y&J 2
z J 2

x&J 2
z J 2

y) } pn } pn+2

=( p2
n&1) } ( p2

n+2&1) } J (2)
x &( p2

n+1) } ( p2
n+2+1)

} J (2)
y +4 } J (2)

z } pn } pn+2=0 (52)

where J (2)
x , J (2)

y and J (2)
z are given below (see (55)). One remarks that (52)

is actually of the same form as (49). The two biquadratic curves (48) and
(52) are (birationally) equivalent, their shift * and modular invariant(54)

being equal. Actually one can find directly the homographic transformation

qn=
: } pn+;
# } pn+$

, qn+1=
: } pn+2+;
# } pn+2+$

(53)

which maps (48) onto (52), the parameters :,... $ of the homographic trans-
formation (53) being quite involved. The calculations are quite tedious and
will be given elsewhere.

Let us make a few comments on this equivalence between the
biquadratic (48), which is symmetric under the permutations of Jx , Jy and Jz ,
and the biquadratic (52) which breaks this symmetry. In fact, the two
elliptic curves (48) and (52) share the same modular invariant (46),
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symmetric under the permutations of Jx , Jy and Jz . This modular invariant
can be written:

j=256
(1&M+M2)3

M2(1&M)2 (54)

where M is given by the simple expression (51), but also similar expres-
sions where Jx , Jy and Jz are permuted (which amounts to performing
simple homographic changes on M representing the permutation group of
three elements, namely M � 1�M, M � 1&M,...). Similarly, the biquadratic
(52) is (birationally) equivalent to five other equivalent biquadratics deduced
from (52) by permutations of Jx , Jy and Jz .

The previously described elimination of pn+1 , changing 11 into 12 ,
amounts to eliminating un+1 between un � un+1=un\* and un+1 � un+2

=un+1\* thus getting un � un+2=un\2 } *, together with two times
un � un+2=un . Considering the coefficients of the biquadratic (52) one
thus gets, very simply, a polynomial representation of the shift doubling
* � 2 } *:

Jx � J (2)
x =&J 2

z J 2
x+J 2

z J 2
y&J 2

xJ 2
y

Jy � J (2)
y =J 2

z J 2
x&J 2

z J 2
y&J 2

xJ 2
y (55)

Jz � J (2)
z =&J 2

z J 2
x&J 2

z J 2
y+J 2

xJ 2
y

The modulus (51) is (as it should) invariant by (55), which represents the
shift doubling transformation. A general calculation, corresponding to
eliminations between two biquadratics 11 of same modulus (51), but dif-
ferent shifts * and *$, will be given elsewhere.

Of course there is nothing specific with the shift doubling: similar
calculations can be performed to get polynomial representations of * � M } *,
for any integer M. Actually, it will be seen on many examples given in the
next section and in Appendix A, that the multiplication of the shift by a
prime number N{2 has the following polynomial representation (Jx , Jy , Jz)
� (J (N )

x , J (N )
y , J (N )

z ):

J (N )
x =Jx } P (N )

x (Jx , Jy , Jz)

J (N )
y =Jy } P (N )

y (Jx , Jy , Jz)=Jy } P(N )
x (Jy , Jz , Jx) (56)

J (N )
z =Jz } P (N )

z (Jx , Jy , Jz)=Jz } P (N )
x (Jz , Jx , Jy)
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where the P(N )
x (Jx , Jy , Jz)'s (and thus P (N )

y (Jx , Jy , Jz), P (N )
z (Jx , Jy , Jz)) are

polynomials of J 2
x , J 2

y and J 2
z .

Terminology problem: From the point of view of discrete dynamical
systems a mapping like (55) (or (56) and the mappings given below (58),...)
could, at first sight, be called ``integrable:'' the iteration of this (two-dimen-
sional) mapping ``densifies'' algebraic curves (conics) foliating the whole
two-dimensional space, namely M=constant, exactly as an integrable
mapping does.(18, 20) One can even write explicit analytical expressions for
the Nth iterate, for any N. However, this mapping is not reversible, the
growth of the calculations(25�27) is exponential (2N exponential growth, ln(2)
topological entropy,...). In fact this very example of ``calculable'' chaos is
the exact equivalent of the situation encountered with the logistic map x �
: } x } (1&x) for :=4: one does not have a representation of a translation
% � %+N } *, but a representation of the iteration of a multiplication by 2:
% � 2N } %.

6. POLYNOMIAL REPRESENTATIONS OF THE
MULTIPLICATION OF THE SHIFT BY AN INTEGER AND
ASSOCIATED FINITE ORDER CONDITIONS

The multiplication of the shift by three can be obtained using the pre-
vious elimination procedure, namely eliminating y between 12(x, y) and
11( y, z) (or equivalently eliminating y between 11(x, y) and 12( y, z)), thus
yielding a resultant which factorizes into two biquadratics of the same form
as the two previous ones, namely 11(x, z) and 13(x, z):

13(x, z)=(x2&1) } (z2&1) } J (3)
x &(x2+1) } (z2+1) } J (3)

y +4 } J (3)
z } x } z=0

(57)

where J (3)
x , J (3)

y and J (3)
z are polynomials in Jx , Jy and Jz . This provides a

polynomial representation (Jx , Jy , Jz) � (J (3)
x , J (3)

y , J (3)
z ) of the multiplica-

tion of the shift by three. This polynomial representation is of the form
(56), where

P (3)
x =&2J 2

z J 2
yJ 4

x&3J 4
y J 4

z+2J 2
y J 4

z J 2
x+J 4

yJ 4
x+2J 4

yJ 2
z J 2

x+J 4
z J 4

x (58)

The modulus (51) is (as it should) invariant by the polynomial representation
(58) of the multiplication of the shift by three (58).

The multiplication of the shift by four has the following polynomial
representation (Jx , Jy , Jz) � (J (4)

x , J (4)
y , J (4)

z ):
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J (4)
x =&4J 6

xJ 6
yJ 4

z&6J 8
z J 4

yJ 4
x+4J 8

z J 6
yJ 2

x

+4J 8
z J 2

y J 6
x+4J 6

z J 6
yJ 4

x&4J 2
z J 8

xJ 6
y+10J 4

z J 8
xJ 4

y

&4J 6
z J 8

xJ 2
y&J 8

xJ 8
y&J 8

z J 8
y&J 8

z J 8
x

+4J 2
z J 8

yJ 6
x&4J 6

z J 6
xJ 4

y+4J 6
z J 8

y J 2
x&6J 4

z J 8
yJ 4

x

J (4)
y =&J 8

x J 8
y&J 8

z J 8
y&J 8

z J 8
x&4J 6

xJ 6
yJ 4

z

&6J 8
z J 4

y J 4
x+4J 8

z J 6
yJ 2

x+4J 8
z J 2

yJ 6
x&4J 2

z J 8
yJ 6

x

+10J 4
z J 8

y J 4
x&4J 6

z J 6
y J 4

x&4J 6
z J 8

yJ 2
x

+4J 2
z J 8

xJ 6
y&6J 4

z J 8
xJ 4

y+4J 6
z J 8

xJ 2
y+4J 6

z J 6
xJ 4

y

J (4)
z =&J 8

x J 8
y&J 8

z J 8
y&J 8

z J 8
x&6J 4

z J 8
xJ 4

y

+4J 6
z J 8

xJ 2
y+4J 2

z J 8
yJ 6

x&4J 6
z J 6

yJ 4
x+10J 8

z J4
y J 4

x

&4J 8
z J 6

y J 2
x&4J 8

z J 2
yJ 6

x+4J 6
xJ 6

yJ 4
z

&4J 6
z J 6

xJ 4
y+4J 2

z J 8
xJ 6

y+4J 6
z J 8

yJ 2
x&6J 4

z J 8
yJ 4

x (59)

which can be obtained, either by the elimination of y between 12(x, y) and
12( y, z) (and extracting a (x&z)2 factor in the resultant), or, equivalently,
by the elimination of y between 11(x, y) and 13( y, z), or the elimination
of y between 13(x, y) and 11( y, z) (and extracting a 12 factor in the resul-
tant). Again, one gets 14(x, z):

14(x, z)=(x2&1) } (z2&1) } J (4)
x &(x2+1) } (z2+1) } J (4)

y +4 } J (4)
z } x } z=0

(60)

where J (4)
x , J (4)

y and J (4)
z are given above. It can easily be verified that (59)

can be obtained directly combining (55) with itself.
The multiplication of the shift by five has a polynomial representation

(Jx , Jy , Jz) � (J (5)
x , J (5)

y , J (5)
z ) of the form (56), where:

P5(Jx , Jy , Jz)

=5J z
12J y

12+(J z
2&J y

2)6 J x
12&10J y

10J z
10(J z

2+J y
2) J x

2

+36J y
6J z

6(J z
2+J y

2)(Jz
2&J y

2)2 J x
6

+J y
8J z

8(4JzJy+3J z
2&3J y

2)(3J y
2+4Jz Jy&3J z

2) J x
4

&J z
4J y

4(29J z
4+54J z

2Jy
2+29J y

4)(J z
2&J y

2)2 J x
8

+2J z
2J y

2(J y
2+3J z

2)(3J y
2+J z

2)(J z
2+J y

2)(J z
2&J y

2)2 J x
10 (61)

663Let's Baxterise



The modulus (51) is, again, invariant by this last polynomial represen-
tation of the multiplication of the shift by five. One remarks that
P(5)

x (Jx , Jy , Jz) singles out Jx and is invariant under the permutation
Jy W Jz and, similarly, P (5)

y (Jx , Jy , Jz) singles out Jy and is invariant under
the permutation Jx W Jz and P (5)

z (Jx , Jy , Jz) singles out Jz and is invariant
under the permutation Jx W Jy . One has similar results for the polynomial
representation of the multiplication of the shift by M=6, 7, 9, 11,... . The
explicit expressions of these polynomial representations are given in
Appendix A.

Let us denote by 1N a biquadratic corresponding to u � u\N } *:

1N(x, z)=(x2&1) } (z2&1) } J (N )
x &(x2+1) } (z2+1) } J (N )

y

+4 } J (N )
z } x } z=0 (62)

In general, it should be noticed that the elimination of y between 1M(x, y)
and 1M$( y, z), yields a resultant which is factorized into 1(M+M$)(x, z) and
1(M&M$)(x, z) (for M�M$). When seeking for a new 1N(x, z) there may be
many (M, M$) enabling to get 1N(x, z) (that is such that N=M+M$).
One can verify that all these calculations give, as it should, the same result
(in agreement with a polynomial representation of u � u\M } *\M$ } *
giving u\(M+M$) } * or u\(M&M$) } *. Let us denote TN these homo-
geneous polynomial representations of the multiplication of the shift by the
natural integer N. In the same spirit one can verify, for N=M } M$
(N, M, M$ natural integers), that:

TN(Jx , Jy , Jz)=(TM)M$ (Jx , Jy , Jz)=TM(TM(TM( } } } TM(Jx , Jy , Jz) } } } )))

=(TM$)
M (Jx , Jy , Jz)

=TM$(TM$(TM$( } } } TM$(Jx , Jy , Jz) } } } ))) (63)

One can, for instance, easily verify that T2 and T3 commute, as well as T2

and T5 . Similarly one can verify, in a brute-force way, that T3 and T5

commute. This commutation relations are true for TN and TM , for any N
and M. One thus has a polynomial representation of the natural integers
together with their multiplication. One verifies easily that the homogeneous
polynomial transformations TM are all of degree M2, in Jx , Jy , Jz , for
M=2, 3, 4, 5, 6, 7, 9, 11.

6.1. Finite Order Conditions and Associated
Algebraic Varieties

Let us show that one can deduce the (projective) finite order condi-
tions KM(R)=` } R, from the previous polynomial representations. Our
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motivation is that the corresponding algebraic varieties are ``good
candidates'' for new free-(para?)-fermions, or new equivalent of the
integrable chiral Potts model.(11) Actually, it will be shown, in a forthcom-
ing publication, that the Baxterisation procedure actually yields an elliptic
foliation of the (general ) anisotropic four state chiral Potts model. Com-
pletely similar calculations can thus be performed, yielding an infinite set
of ``good candidates'' for (higher genus) star-triangle integrability, enabling,
in particular, to recover the higher genus integrable solution of Baxter�
Perk�Au-Yang.(24) Of course, for the sixteen vertex model, we do not
expect that one of this infinite set of finite order conditions could yield new
Yang�Baxter integrable subcases of the sixteen vertex model.19 We just
consider the sixteen vertex model for heuristic reasons.

Since one knows that the (projective) finite order conditions of K� 2

often play a singled-out role for integrability (see the previous Section 3.1),
and, in particular, since one knows(6) that the free-fermion conditions of
the asymmetric eight vertex model correspond to K4(R)=` } R, one can, as
an exercise, try to systematically write, for the sixteen vertex model, the
(projective) finite order conditions K2N(R)=` } R, with N natural integer.

Let us first give these finite order conditions for the Baxter model. For
this heuristic model it is not necessary to explain, beyond the free-fermion
subcase, the usefulness of the finite order conditions any further: these
algebraic varieties correspond exactly to the set of RSOS models.(7)

At first sight, writing down the (projective) finite order condition
K2N(R)=` } R, corresponds to write four homogeneous equations on the
four homogeneous parameters a, b, c and d, yielding to points in the (pro-
jective) parameter space (codimension three). In fact the Baxter R-matrices
of order two (K2(R)=` } R) correspond to codimension two algebraic
varieties. One easily check (see also Section 7.1) that c=d=0 are such
matrices. Furthermore, recalling(6) that the free-fermion condition for the
XYZ Hamiltonian, Jz=0, corresponds to the finite order (projective) con-
dition K4(R)=` } R, one actually sees that the R-matrices of order four can
actually correspond to a codimension one algebraic variety (only one
algebraic condition on the homogeneous parameters of the model). Recall-
ing the polynomial representation (55) of the shift doubling, one can easily
get convinced that J (2)

z =0 should correspond to K8(R)=` } R, also yield-
ing a only one algebraic condition on the homogeneous parameters of the
model (codimension one algebraic variety). This can be verified by a
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straight calculation. This is a general result: all the finite order conditions
K2N(R)=` } R correspond to codimension one algebraic varieties, expect
N=1. The idea here is the following: K, or K� , corresponding, with some
well-suited spectral parameter, to % � %+', K2, or K� 2, must correspond to
% � %+2 } '. A finite order condition of order M corresponds to a commen-
suration of ' with a period of the elliptic curves: '=P�M, that is just one
condition on the parameters of the model. Changing K into K2 amounts to
changing ' into 2 } ', or equivalently, changing the order M into 2M. The
fact that the finite order conditions K 2N(R)=` } R correspond to codimen-
sion one algebraic varieties is thus a consequence of the foliation of the
parameter space in elliptic curves.

More generally, a polynomial condition C2N(Jx , Jy , Jz)=0, corre-
sponding to K2N(R)=` } R, has to be compatible with the polynomial
representations of * � M } *, for any integer M. This compatibility is often,
in fact, an efficient way to get these finite order conditions. Explicit expres-
sions of finite order conditions, as well as their compatibility with the shift
doubling and, more generally, the polynomial representations of * � M } *,
are given in Appendix B. For a prime integer N{2 the algebraic varieties
P(N )

x (Jx , Jy , Jz)=0, P (N )
y (Jx , Jy , Jz)=0, and P (N )

z (Jx , Jy , Jz)=0 give order
4N conditions:

K4N(R)=` } R (64)

Since the P(N )'s (and the J (N )'s for N even) are functions of J 2
x , J 2

y and J 2
z ,

the order 4N conditions, K4N(R)=` } R, are also functions of the square
J2

x , J 2
y and J 2

z . One can easily get infinite families of finite order conditions.
For instance, iterating the shift doubling (55) (resp. (58)), and using this
transformation on Jz=0, one easily gets an infinite number of algebraic
varieties corresponding to the finite order conditions of order 2N (resp. 3N).
Combining (55) and (58), one gets straightforwardly the finite order condi-
tions of order 2N_3M. More details will be given elsewhere.

To sum up: One sees that the, at first sight, ``hardly Baxterisable'' case
of finite order iteration provides, to some extend, more results, and struc-
tures, than a ``standard'' infinite order Baxterisation: one gets, for instance,
a polynomial representation of the natural integers together with their multi-
plication, this polynomial representation leaving invariant the modular
invariant(54) of the elliptic curves, and giving codimension-one algebraic
varieties compatible with this structure...

Remark: Finite Order Conditions for the Sixteen Vertex
Model. Using the previous results, the decomposition (42) of the sixteen
vertex model into a ``K� 2-effective'' Baxter model, and relation (43), one can
obtain the finite order conditions, K4N(R)=` } R, for the sixteen vertex

666 Boukraa and Maillard



model and find that they are actually codimension-one algebraic varieties.
Recalling (43), one easily deduces that these finite order conditions are
actually given in terms of the finite order conditions of the ``K� 2-effective''
Baxter model. These finite order conditions (see Appendix B) are simply
expressed in terms of the associated ``K� 2-effective'' variables Jx , Jy and Jz

which can be obtained from relations (44), (45). Eliminating the Jx , Jy and Jz ,
one can write these finite order conditions (which are simple polynomial
expressions of the Jx , Jy and Jz) in terms of \, * and + (see (44)). Using
(20) one can write down the (homogeneous polynomial) expressions,
corresponding to these finite order conditions, in terms of the sixteen
homogeneous parameters of the sixteen vertex model. The calculations are
straightforward but yield ``huge'' expressions in terms of these sixteen
homogeneous parameters that will not be given here. However, one can
easily check numerically these finite order conditions on R-matrices satisfy-
ing one of these finite order conditions, or even write some of these condi-
tions for the asymmetric eight vertex model. For instance the R-matrix
satisfying an order six condition of Appendix B:

Rsixteen=_
1031472
1389212
2164474
2918010

1261594
1699970
2649426
3573322

1513016
2038844
3180102
4289126

1853022
2498102
3897318
5258478& (65)

actually verifies K� 6(Rsixteen)=Rsixteen . The asymmetric eight vertex model
(7) corresponds to the following ``effective'' covariants Jx , Jy and Jz :

Jx=((aa$bb$)1�2+(cc$dd $)1�2), Jy=((aa$bb$)1�2&(cc$dd $)1�2)
(66)

Jz=(aa$+bb$&cc$&dd $)�2

Substituting (66) into the finite order conditions given in Appendix B, one
gets several explicit examples of finite order conditions for the asymmetric
six vertex model. One can easily verify (and understand) that these finite
order conditions are (homogeneous) polynomial expressions (with integer
coefficients) of the products aa$, bb$, cc$ and dd $ and that no square root
occurs (see (66)).

7. LET US BAXTERISE QUANTUM HAMILTONIANS

Let us now consider a typical problem for any theoretician who wants
to provide some ``interesting contribution'' in High-Tc superconductivity.
Let us consider a strongly correlated quantum Hamiltonian which looks
like a t-J model, (55�57) or a Hubbard model, (58, 59) or some coupled XYZ
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quantum chains: how is it possible to see if this quantum Hamiltonian is
integrable? More generally, let us consider a quantum Hamiltonian. How
to see if it is possible to solve this quantum Hamiltonian? The Bethe
Ansatz only works if one has some ``conservation operator somewhere''20

that enables to see this model as some ``avatar'' of the six-vertex model
(XXZ chain). Beyond this restricted Bethe Ansatz framework, and if one
cannot, or does not know how to, associate a (commuting) family of trans-
fer matrices, commuting with this Hamiltonian, one has very few tools left
to solve this quantum Hamiltonian.21 For a Yang�Baxter integrable model
depending on one spectral parameter, the associated integrable quantum
Hamiltonian can be seen as the derivative of the (logarithm) of the transfer
matrix at a singled-out value of the spectral parameter: therefore the inte-
grable quantum Hamiltonian does not depend on the spectral parameter.
If the Bethe Ansatz is too complicated, or does not exist (higher genus
curves,...), how can we make the spectral parameter(s) ``emerge'' so that the
integrability structure becomes crystal clear? This is clearly another type of
Baxterisation problem. Let us sketch how this can be done.

Remark. The derivation of the quantum Hamiltonian from a family
of commuting transfer matrices is well-known, however the problem of the
integrable deformations of a given integrable quantum Hamiltonian and
the building of the (many parameters at first sight) family of transfer
matrices, this extended quantum Hamiltonian commutes with, is a much
more difficult problem. The next section tries to address these difficult
problems, using already known simple examples. Since, in order to
illustrate the Baxterisation of quantum Hamiltonians with simple exact
analytical results, we revisit already known integrable examples, most of
this section ``looks like'' the usual derivation of the hamiltonian from the
transfer matrix, presented in reversed order. In fact, the Baxterisation of
quantum Hamiltonians can be considered22 beyond already known
integrable cases, however the method becomes extremely difficult to handle
in practice when the orbits of K� 2, with a given tangent corresponding to
the Hamiltonian, are no longer (elliptic or rational) curves, but higher
dimensional Abelian varieties (see the various figures in ref. 16), and,
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21 The random matrix theory analysis of the level spacing distribution remains a possible tool
to simply ``detect'' integrability.(61) However, besides the technical difficulties associated with
the unfolding procedure, the calculations become very large for the 16_16 (Hubbard)
R-matrices, or for two coupled spin chains.

22 Numerically the Baxterisation of quantum Hamiltonians amounts to looking at the orbits
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sponding to the permutation P of the vertical and horizontal spaces (see below).



especially, when the singular point P (see below) is replaced by a higher
dimensional singular locus (see the remark in the next section). We just try
here, modestly, to address some of the subtleties and difficulties arising in
the Baxterisation of quantum Hamiltonians. One will, however, see that
the Baxterisation procedure enables, in a first step, to get some hint on the
d-dimensional vector spaces of the R-matrices (the ``form'' of the R-matrices)
where the integrable algebraic subvarieties can live (see for instance (83),
(84) and (90), in the following), and that integrability is associated with the
occurrence of some additional factorization properties for the homoge-
neous transformation K.

7.1. Let Us Baxterise the XYZ Quantum Hamiltonian

Let us recall the XYZ Hamiltonian, (36, 62) HXYZ=�n Hn, n+1 , and let
us represent Hn, n+1=Jx } _x

n } _x
n+1+Jy } _ y

n } _ y
n+1+Jz } _z

n } _z
n+1 and P, the

matrix of permutation of the vertical space n and n+1, as 4_4 matrices:

Hn, n+1=_
Jz
0
0

Jx&Jy

0
&Jz

Jx+Jy
0

0
Jx+Jy

&Jz
0

Jx&Jy
0
0
Jz & , P=_

1
0
0
0

0
0
1
0

0
1
0
0

0
0
0
1&

(67)

Recalling Baxter's notations, the R-matrix, reads at order one in some
small expansion parameter =:

R=P+= } P } Hn, n+1+ } } }

=_
1
0
0
0

0
0
1
0

0
1
0
0

0
0
0
1&+= } _

Jz
0
0

Jx&Jy

0
Jx+Jy

&Jz
0

0
&Jz

Jx+Jy
0

Jx&Jy
0
0
Jz &+ } } }

=_
1+=Jz

0
0

= } (Jx&Jy)

0
= } (Jx+Jy)

1&= } Jz
0

0
1&= } Jz

=(Jx+Jy)
0

= } (Jx&Jy)
0
0

1+= } Jz &+ } } }

=_
a
0
0
d

0
b
c
0

0
c
b
0

d
0
0
a& (68)
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One has the correspondence:

a=1+= } Jz+ } } } , b== } (Jx+Jy)+ } } }

c=1&= } Jz+ } } } , d== } (Jx&Jy)+ } } }

One verifies, immediately, that the algebraic K-covariants of the
Baxter model read:

a2+b2&c2&d 2

2
=2= } Jz , a } b+c } d=2= } Jx , a } b&c } d=2= } Jy

(69)

the K� -invariants being (for instance) the ratio Jx �Jz and Jy �Jz . The
R-matrix P can be seen to belong to all the elliptic curves of this foliation
of the Baxter model (the invariants (a2+b2&c2&d 2)�a�b or ab�c�d are of
the form 0�0). Matrix P is really the equivalent of the base point of an
elliptic foliation.(63)

Having the XYZ Hamiltonian and willing to ``recover'' the Baxter
R-matrix (and its canonical elliptic parameterization) is a slight modification
of the previous Baxterisation process of R-matrices, or monodromy
matrices, where we were building the algebraic variety from one arbitrary
point of the algebraic variety. We do not have a point of the elliptic curve
here, but rather a singular point, which is the equivalent of the base point
of an elliptic foliation, namely point P, and a ``vector'' (Jx , Jy , Jz) giving
the tangent to the elliptic curve at point P. It is however clear that
[P, (Jx , Jy , Jz)] is sufficient to build, in a unique way, the elliptic curve,
and thus the spectral parameter.

A Heuristic Remark. Point P is a singular point of K2 and the
diagonal matrices are fixed points of K� 2:

K(P)=_
&1
0
0

&1

0
0
0
0

0
0
0
0

&1
0
0

&1& , K(K(P))=_
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0&

K� 2 _
A
0
0
0

0
B
0
0

0
0
C
0

0
0
0
D&=_

A
0
0
0

0
B
0
0

0
0
C
0

0
0
0
D&

More generally, considering the most general 4_4 matrices (sixteen vertex
model), the singular matrices for K2 are the R-matrices such that K(R) is
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a rank two matrix. For the Baxter model singular matrices, such that
K2(R) is the null matrix, are, for instance, d=b=0 or a=c=0. The base
points of the elliptic foliation of the parameter space of the Baxter model
are a subset of these singular subvarieties. The base points of the elliptic
foliation are the points such that the K-invariante, (a2+b2&c2&d 2)�a�b
or ab�c�d, are both of the form 0�0, namely d=b=0, c=a, or d=b=0,
a=&c, or a=d=0, b=c, or b=&c, a=d=0. This can be easily gener-
alized to the sixteen vertex model by imposing that the pi 's K-covariants, (34)

mentioned in Section 5.1, are all equal to zero.
In general these two sets of subvarieties, namely the singular sub-

varieties and the subvarieties of fixed points of K� 2, play a crucial role in the
Baxterisation of a Hamiltonian. The subvariety of fixed points of K� 2 always
contains the set of all the diagonal matrices. Not surprisingly we will see,
in the next section, that diagonal matrices naturally occur (in a non-trivial
way) in the Baxterisation process (see for instance (76) below).

7.2. Let Us Baxterise the t-J Quantum Hamiltonian

Let us recall the Hamiltonian of the t-J model, (55) and let us consider an
ordering of the 9_9 R-matrices, well-suited for the partial transposition t1 :

(+, +)(+, &)(+, 0), (&, +), (&, &), (&, 0), (0, +), (0, &)(0, 0) (70)

With this ordering, the ``local Hamiltonian'' of the t-J model, equivalent of
the previous Hn, n+1 , and the permutation matrix P, read respectively:

V+ J
4 0 0 0 0 0 0 0 0

0 V& J
4 0 J

2 0 0 0 0 0
0 0 0 0 0 0 &t 0 0
0 J

2 0 V& J
4 0 0 0 0 0

Hn, n+1= 0 0 0 0 V+ J
4 0 0 0 0

0 0 0 0 0 0 0 &t 0
0 0 &t 0 0 0 0 0 0
0 0 0 0 0 &t 0 0 0
0 0 0 0 0 0 0 0 0

(71)
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0

P= 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
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The integrability cases(64) correspond to (V, J )=(&t�2, 2t) or (t�2, &2t)
or (3t�2, 2t) or (&3t�2, &2t), The R-matrix reads at order one in some
small expansion parameter =:

R=P+= } P } Hn, n+1+ } } }

=

1+= } (V+J�4) 0 0 0 0 0 0 0 0

0 = } J�2 0 1+= } (V&J�4) 0 0 0 0 0

0 0 &= } t 0 0 0 1 0 0

0 1+= } (V&J�4) 0 = } J�2 0 0 0 0 0

0 0 0 0 1+= } (V+J�4) 0 0 0 0

0 0 0 0 0 &= } t 0 1 0

0 0 1 0 0 0 &= } t 0 0

0 0 0 0 0 1 0 &= } t 0

0 0 0 0 0 0 0 0 1

+ } } } (72)

The (supersymmetric) integrable case (V, J )=(&t�2, 2t) yields the
(supersymmetric) ``local Hamiltonian'' Hn, n+1(J=2t, V=&t�2)=t } Hsusy :

t } Hsusy=t }

0 0 0 0 0 0 0 0 0

(73)

0 &1 0 1 0 0 0 0 0

0 0 0 0 0 0 &1 0 0

0 1 0 &1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 &1 0

0 0 &1 0 0 0 0 0 0

0 0 0 0 0 &1 0 0 0

0 0 0 0 0 0 0 0 0

Let us ``absorb'' the homogeneity of Hsusy by introducing x=&= } t. At first
sight, one wants to Baxterise:

Raw=P&x } P } Hsusy+ } } } (74)
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Let us introduce two 9_9 matrices:

1 0 0 1 0 0 1 0 0 1 0 0

N� =_0 1 0&�_0 1 0&+_0 1 0&�_0 1 0&0 0 0 0 0 1 0 0 1 0 0 0
(75)

1 0 0 0 0 0 0 0 0 1 0 0

N� $=_0 1 0&�_0 0 0&+_0 0 0&�_0 1 0&0 0 0 0 0 1 0 0 1 0 0 0

With ordering (70), matrix N� is associated with the electron-counting
operator which commutes with the t-J Hamiltonian. Matrix N� commutes
with P and is such that the matrix D=P } Hsusy&P+P } N� is a diagonal
matrix of successive diagonal entries: 1, 1, &1, 1, 1, &1, &1, &1, &1.
Actually, as far as the integrability of the model is concerned, one can add
to the Hamiltonian an operator which commutes with it. Obviously one can
also add to the R-matrix, a term x } P which just amounts to a global 1+x
multiplicative factor in front of P. This amounts to introducing, instead of
(74), the following R-matrix:

R1(x)=P&x } D=(1+x) } P&x } P } Hsusy&x } P } N�

=(1+x) } P } \I&
x

1+x
} (Hsusy+N� )+

1&x 0 0 0 0 0 0 0 0
0 &x 0 1 0 0 0 0 0
0 0 x 0 0 0 1 0 0
0 1 0 &x 0 0 0 0 0

= 0 0 0 0 1&x 0 0 0 0 (76)
0 0 0 0 0 x 0 1 0
0 0 1 0 0 0 x 0 0
0 0 0 0 0 1 0 x 0
0 0 0 0 0 0 0 0 1+x

where I denotes the 9_9 identity matrix. Under transformation K� 4 the
R-matrix R1(x) becomes another matrix, of the same form, 23 but where
x � x+2:

K� 4(R1(x))=
x&1
x+1

} R1(x+2) (77)
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This solves the Baxterisation problem of (73), reducing it, after addition of
``well-suited'' commuting operators, to a simple linear interpolation.

v Another integrable case(64) for (71) is (V, J )=(3t�2, 2t), for which
one has to introduce another correction namely N� $ in (75), yielding the
same R-matrix (76), namely R1=P&x } D, the diagonal matrix D being,
now, equal to P } HtJ&P+P } N� $, where HtJ is given by (71) for (V, J )=
(3t�2, 2t).

v Two other integrable cases(64) for (71) namely (V, J )=(&3t�2, &2t)
and (V, J )=(t�2, &2t) yield the same R-matrix R2 . For (V, J )=
(&3t�2, &2t) and (V, J )=(t�2, &2t) one has to introduce the correction N�
and N� $ respectively, yielding a very simple R-matrix R2=x } I+P.
Similarly, under transformation K� 2, matrix R2(x) becomes another matrix
of the same form but where x � x&3:

K� 2(R2(x))=
x2&1

x } (x&3)
} R2(x&3) (78)

thus solving the Baxterisation problem of these last two integrable cases as
a simple linear interpolation between I and P.

7.3. Hamiltonian Dependence of the Baxterisation Procedure

One certainly wants the Baxterisation procedure of a quantum
Hamiltonian to be ``universal:'' it should be compatible with the addition
of quantum operators which commute with the quantum Hamiltonian,
and, thus, do not modify the integrability of the Hamiltonian.

The Baxterisation procedure is, of course, compatible with the gauge
transformations on the quantum Hamiltonian:

Hn, n+1 � Hn, n+1+(G:
n�In&In+1 �G:

n+1) (79)

where In and In+1 denote the identity operators on site n and n+1 respec-
tively, the ``exponentiation'' of (79) giving the R � g&1�h&1 } R } g�h
well-known gauge symmetries, (44) compatible with the Baxterisation:
K� 2(g&1�h&1 } R } g�h)= g&1�h&1 } K� 2(R) } g�h. Furthermore, from
the symmetries of the Baxterisation (see for instance (34)), one deduces
that the Baxterisation of a quantum Hamiltonian is necessarily compatible
with the following deformations of Hn, n, +1 generalizing24 (79):

Hn, n+1 � Hn, n+1+(G:
n�In&In+1 �G:

n+1)+(G� ;
n �In+In+1 �G� ;

n+1)

(80)
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The Baxterisation should also provide (at least as far as integrability is
concerned) compatible results when one adds, to the quantum
Hamiltonian �n Hn, n+1 , operators commuting with it:

Hn, n+1 � Hn, n+1+O:
n, n+1 , :=1,..., r (81)

where the �n O:
n, n+1 's commute with �n Hn, n+1 . When the quantum

Hamiltonian �n Hn, n+1 , is integrable, one would like to have a complete
description of all the integrable deformations (81), and a complete descrip-
tion of the algebraic variety associated with the Baxterisation of the largest
integrable deformation of the quantum Hamiltonian (as many O:

n, n+1 's as
possible). Are all the integrable deformations O:

n, n+1 necessarily of the
K� 2-compatible form (80)? All the O:

n, n+1 's are such that the �n O:
n, n+1 's

commute with �n Hn, n+1 , but do all the O:
n, n+1 's commute with Hn, n+1

and commute25 all together? Is there a way to find r, the largest number
of integrable deformations O:

n, n+1 , by simple arguments? Is it possible to
find lower and upper bounds26 for r? All these questions will be analysed
in details elsewhere. Let us just give, in the following sections, some partial
answers to these questions based on deformations of the two previous
``heuristic'' integrable cases, namely R-matrices R1(x) and R2(x).

Let us try to see what happens when one changes the integrable
Hamiltonian adding an operator which commutes with it. Suppose that,
instead of introducing the R-matrix R1(x), which yields a simple linear
interpolation for the Baxterisation process (76), one introduces:

R(x, y)=P&x } D+ y } P } N�

=(1+x) } P&x } P } Hsusy&(x& y) } P } N� (82)

One can actually easily verify that the n th K� 2-iterate of R(x, y) are all
linear combinations of R(x, y), K� 2(R(x, y)), K� 4(R(x, y)), K� 6(R(x, y)) and
K� 8(R(x, y)) or, equivalently, R(x, y), K� 2(R(x, y)), K� 4(R(x, y)), P and
P } N� :
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25 In the case where K� 2 is an infinite order transformation densifying an algebraic variety, this
variety is an Abelian variety and one can deduce, from this Abelian property, that the
P } O:

n, n+1 's should commute.
26 For Abelian varieties parameterized by theta functions of g variables, one could imagine

that r should be related to g+Ng , where Ng denotes the number of independent gauge
deformations (79).



K� 2n(R(x, y))=A (n)
0 } R(x, y)+A (n)

1 } K� 2(R(x, y))

+A(n)
2 } K� 4(R(x, y))+A (n)

3 } P+A (n)
4 } P } N�

=B (n)
0 } R(x, y)+B(n)

1 } K� 2(R(x, y))+B (n)
2 } K� 4(R(x, y))

+B(n)
3 } K� 6(R(x, y))+B (n)

4 } K� 8(R(x, y)) (83)

In other words, the Baxterisation acts in the four-dimensional vector
space27 of the R-matrices of the form (83). The Baxterisation of R(x, y)
gives successive 9_9 matrices K� 2n(R(x, y)) of the form:

R(A, B, C, D, E, F )

=

A 0 0 0 0 0 0 0 0

where A=B+C (84)

0 B 0 C 0 0 0 0 0

0 0 D 0 0 0 E 0 0

0 C 0 B 0 0 0 0 0

0 0 0 0 A 0 0 0 0

0 0 0 0 0 D 0 E 0

0 0 E 0 0 0 D 0 0

0 0 0 0 0 E 0 D 0

0 0 0 0 0 0 0 0 F

Factorization scheme: Let us Baxterise m0=R(x, y) using the
homogeneous transformation K. The first iteration reads m1=K(m0). Let us
denote G1 the gcd of all the entries of matrix m1 . In order to go on iterat-
ing, it is better to introduce the ``reduced'' matrix, M1=m1 �G1 . Let us
denote m2=K(M1). Similarly, one can introduce G2 the gcd of all the
entries of matrix m2 , and define the ``reduced'' matrix, M2=m2 �G2 , and so
on. Introducing G(w) the generating function of the degree of the successive
gcd's Gn 's, and D(w) the generating function of the degree of the deter-
minants of the successive reduced matrices Mn 's, one gets for the iteration
of (for instance) R(x, 2):

G(w)=4w+25w2+34w3+144w4+164w5+604w6+684w7++2444w8

+2764w9 } } }
(85)

D(w)=9+36w+63w2+198w3+288w4+828w5+1188w6+3348w7

+4788w8+13428w9+ } } }
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Of course one easily verifies that (1&8w) } D(w)+9G(w)&9=0, which is
simply deduced from:

Mn+1=
K(Mn)
Gn+1

(86)

One easily verifies, up to order nine, that (85) are the expansions of the
two rational expressions:

G(w)=
w } (4+21w&7w2+26w3&16w4)

(1&w)(1+2w)(1&2w)
(87)

D(w)=9 }
(1+3w&2w2)(1+w2)
(1&w)(1+2w)(1&2w)

There is nothing specific with y=2: beyond R(x, 2), one also gets (generi-
cally) a 2n exponential growth of the iteration calculations for R(x, y), thus
excluding Yang�Baxter integrability. This may, at first sight, seem in con-
tradiction with the fact that the (local) Hamiltonian H=Hsusy+\ } N� is ``as
integrable as'' Hsusy (or Hsusy+N� ). In fact the (local) Hamiltonian
H=Hsusy+\ } N� should also yield a polynomial growth of the calculation
corresponding to some algebraic subvariety of (84) such that the tangent
space to this algebraic subvariety, at point R=P, contains the vector
P } H=P } (Hsusy+\ } N� ). In other words, R(x, y) should only be integrable
in the (x, y) � (0, 0) limit, but not for finite values for (x, y). In our case
the plane containing point P and the two integrable ``vectors'' P } Hsusy and
P } (Hsusy+\ } N� ), is not included in the algebraic subvariety of polynomial
growth. This is a quite general situation: in general, integrability does not
correspond to linear spaces but to algebraic subvarieties with some ``cur-
vature.''

Deforming (76) with P } N� , one thus finds that the integrability of (76)
is ``surrounded'' by a (four-dimensional) space corresponding, generically,
to a 2n exponential growth. However this does not mean that the whole four-
dimensional space (84) (except (76) of course) corresponds to a 2n

exponential growth: it is possible that some algebraic subvarieties of (84)
could correspond to a polynomial growth of the iteration calculations and,
possibly, correspond to a Yang�Baxter integrability. The question is thus
to find such polynomial growth, and possibly Yang�Baxter integrable,
algebraic subvarieties.28 The next section gives an explicit example of
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varieties, but codimension two, three (or more...) subvarieties.



particular Yang�Baxter integrable deformations of the simple linear
interpolation R2=I+x } P, and gives the associated integrable algebraic
subvariety. Section 7.5 sketches a strategy to find systematically29 these
polynomial growth, and integrable, subvarieties (or, more generally, the
subvarieties of smaller topological entropy(25, 26)).

7.4. Beyond Simple Linear Interpolation:
An Integrable Deformation of R2=I+x } P

Matrix R2=I+x } P gives a Baxterisation of some integrable t-J
Hamiltonian as a simple linear interpolation between P and the identity
matrix I. Let us try to extend this simple linear interpolation, and ``merge''
it into a larger integrable R-matrix. Similarly to what has been previously
performed, let us consider two matrices N and A, which respectively com-
mute, and anticommute, with P:

1 0 0 1 0 0 0 0 0 0 0 0

N=_0 0 0&�_0 0 0&+_0 1 0&�_0 1 0&0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

+_0 0 0&�_0 0 0& (88)

0 0 1 0 0 1

0 0 0 0 &1 0 0 0 0 0 0 1

A=_1 0 0&�_0 0 0&+_0 0 0&�_0 0 0&0 0 0 0 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0

+_0 0 0&�_1 0 0&+_0 0 0&�_ 0 0 0&0 0 0 0 0 0 0 0 0 &1 0 0

0 0 0 0 0 0 0 0 0 0 0 0

+_0 0 1&�_0 0 0&+_0 0 0&�&0 0 &1& (89)

0 0 0 0 1 0 0 1 0 0 0 0
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Do note that P } A is a diagonal matrix with diagonal entries
0, &1, 1, 1, 0, &1, &1, 1, 0. Let us consider a deformation of R2=I+x } P
with these two matrices. This amounts to considering R=P+: } I+
; } A+# } N, or equivalently the non-symmetric R-matrix:

Rz(t, z)=

D 0 0 0 0 0 0 0 0

(90)

0 A 0 B 0 0 0 0 0

0 0 A 0 0 0 C 0 0

0 C 0 A 0 0 0 0 0

0 0 0 0 D 0 0 0 0

0 0 0 0 0 A 0 B 0

0 0 B 0 0 0 A 0 0

0 0 0 0 0 C 0 A 0

0 0 0 0 0 0 0 0 D

This form (90) is stable by K� 2. The P+: } I+; } A+# } N algebra is thus
an algebra well-suited for the action of K� 2. Let us consider (90) for:

A=t } (1&z6), B=z4 } (t2&1), C=z2 } (t2&1), D=t2&z6

(91)

The corresponding R-matrix ((90), (91)) Baxterises in a very simple way:

;(t, z) } K� 2(Rz(t, z))=Rz(t, t } z)

where ;(t, z)=
(1&z3)(1+z3)(z3t3&1)(z3t3+1) t2

(t+z3)(z3t+1)(z3t&1)(t&z3)
(92)

The R-matrix (90), with (91), is actually one of the Yang�Baxter integrable
models of Perk and Schultz, (65, 66) and can be seen as a deformation of
R2(x). Actually, in the limit (z, t)=(1+Z } h, 1+T } h), where h � 0, one
finds that operator A occurs at order one in h, while operator N occurs
at order two in h:

2Rz(t, z)
z2 } (z2+1) } (t2&1)

� \P&3
Z
T

} I++\Z } A+3
Z(Z&T )

2T
} I+ } h

+\Z } (8Z&3T )
2

} N&
Z2

2
} A&

Z(16Z2&3TZ&3T 2)
4T

} I+ } h2+ } } }
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Parametrization (91) is equivalent to the (Yang�Baxter) integrabil-
ity(65, 66) condition:

C(A, B, C, D)=B3D&B2C2+C3D+BCA2&BCD2=0 (93)

This algebraic variety is an extension of the simple interpolation between
the identity matrix and P (Yang R-matrix), which corresponds to C=B
and D=A+B. Actually, for C=B, condition (93) factorizes as follows:

C(A, B, B, D)=&B2 } (D&(B&A)) } (D&(A+B))=0 (94)

Considering the general R-matrix of the form (90) (beyond the
integrability condition (91)), the factorization analysis, which extracts the
gcd's at every step (see (86)), yields a 2n exponential growth of the calcula-
tions. The generating functions of the degrees of the Mn 's and Gn 's (see
(86), (85)) read (the expansions of D(w) and G(w) have been obtained up
to w8):

D(w)=3 }
3&2w+6w2+2w3&6w4

(1&w)(1+w)(1&2w)
(95)

G(w)=w }
6&7w+18w2+6w3&16w4

(1&w)(1+w)(1&2w)

In order to have a polynomial growth of the calculations some addi-
tional factorizations must occur. Actually, for (91), that is when the
integrability condition (93) is satisfied, the generating functions of the
degrees30 now read (the expansions have been obtained up to w8):

D(w)=3 }
6&2w+7w2+7w3

(1&w2)(1&w)
, G(w)=w }

(14&9w+19w2+18w3)
(1&w2)(1&w)

(96)

7.5. Integrability Emerging from the Occurrence of Additional
Factorizations

In fact one can actually find the integrability condition (93), as a
condition corresponding to the occurrence of additional factorizations. The
``bifurcation'' from the polynomial growth of the degrees to a 2n exponen-
tial growth of the degrees, takes place immediately when leaving the
integrability condition (93). In the (A, B, C, D) parameter space, the
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30 The degree, here, being the degree in t, the calculations being performed for (91) with z=3.
Note that there is nothing specific with z=3.



integrability condition (93) is ``surrounded'' by a 2n exponential growth.
More specifically, the ``bifurcation'' from the polynomial growth of the
degrees to a 2n exponential growth of the degrees, takes place with the first
gcd, namely G1 . Let us consider the factorization of the R-matrix corre-
sponding to (91) (that is (93)), and the one where A has been replaced by
A+u, which corresponds to a 2n exponential growth. The first gcd's corre-
sponding to these two situations, namely for u=0 (polynomial growth, inte-
grable) g1 , and for u{0 (2n exponential growth) G1(u), read respectively:31

G1(u)=(&u+z3&t+tz6&z3t2)2 } (&u&z3&t+tz6+z3t2)2

} (t2&z6)2=D2 } (B } C&A2)2

(97)
g1=(t2&z6)5 } (z6t2&1)2

One remarks that:

g1=(t2&z6) } G1(u=0)=D } G1(u=0) (98)

which amounts to saying that, restricting to the integrability condition (93)
(here u=0), an additional factorization occurs, changing (95), and its 2N

exponential growth of the calculations, into (96) and its associated polyno-
mial growth. When the integrability condition (93) is not satisfied, one has
G1=D2 } (B } C&A2)2, and the first ``reduced'' matrix M1 reads:

M1=
K(R)

G1

=

A2&BC 0 0 0 &DC 0 0 0 &DB
0 DA 0 0 0 0 0 0 0
0 0 DA 0 0 0 0 0 0
0 0 0 DA 0 0 0 0 0

&DB 0 0 0 A2&BC 0 0 0 &DC
0 0 0 0 0 DA 0 0 0
0 0 0 0 0 0 DA 0 0
0 0 0 0 0 0 0 DA 0

&DC 0 0 0 &DB 0 0 0 A2&BC

(99)

681Let's Baxterise

31 Note that the factors of G1(u) actually correspond to some factors in det(R(u)) which reads
det(R(u))=(&u+z3&t+tz6&z3t2)3 } (&u&z3&t+tz6+z3t2)3 } (t2&z6)3. This is a general
result: the cofactors associated with K n or t1 and I are necessarily related with powers of
the factors occurring in the determinant (or the whole determinant), and their transformed
by the group generated by t1 and I.



Condition (93), namely (B3+C3) D+((A2&BC )&D2) BC=0, is nothing
but the condition of divisibility of A2&BC by D, which obviously enables
to extract an additional factor D in all the entries of (99). The fact that (93)
is such a condition of divisibility, becomes obvious if one uses the fact that
(93) is a rational surface, and one actually uses this rational parameteriza-
tion. With parameterization (91) the division of A2&BC by D reads:

A2&BC
D

=1&z6 } t2 (100)

Finding systematically algebraic varieties (like (93) but not necessarily
rational) which correspond to additional factorizations in the factorization
scheme, and thus correspond to a smaller complexity of the calculations
(smaller Arnold complexity, (25) smaller topological entropy(26)), can be seen
as a new approach of integrable models. The set of all these singled-out
algebraic varieties, of non generic topological entropy, (25) should be a com-
plicated stratified space. A remarkable subset is the set of algebraic varieties
associated with a polynomial growth of the calculations. A remarkable
subset of the previous subset is the set of algebraic varieties which are
Yang�Baxter integrable.

In this integrable deformations framework (81) one notes that the 9_9
matrices Hn, n+1 , considered for different values of their parameters V, J, t,
commute all together and commute with P and P } Hn, n+1 . Therefore one
could imagine that the matrices R1 , and R2 , could belong to the same
integrable algebraic variety. Is it possible to give a complete description of
all the integrable deformations (81), and a complete description of the
algebraic varieties associated with the Baxterisation of the largest
integrable deformation of such quantum Hamiltonians? These questions
will be studied elsewhere.

8. LET US BAXTERISE DIFFERENTIAL OPERATORS

The Baxterisation is the building of the spectral parameters wherever
they live: on an elliptic curve, on a rational surface, on a Jacobian variety,
on an Abelian variety,... The Baxterisation of R-matrices, or monodromy
matrices, can always be performed systematically using various methods
(analytical methods, by formal calculations, by visualization of the
orbits, (15, 16)...). Let us show, in this section, that these results can even be
extended to infinite dimensional generalizations of monodromy matrices,
namely when the block matrices in the R-matrix are infinite dimensional
linear operators (L-operators, local quantum Lax matrices...).
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Let us first recall the Toda chain.(67, 68) The model represents a chain
of point particles described by coordinates qn and momentum pm with
canonical Poisson brackets [ pm , qn]=$m, n (in the classical case) and
[ pm , qn]=&i$m, n (in the quantum case). The Hamiltonian and the
L-operator are respectively, both in the classical and quantum case32 (see for
instance, ref. 71 or page 197 in ref. 35):

H=:
n \

p2
n

2
+eqn+1&qn+ , L[*]=_*& pn

e&qn

eqn

0 & (101)

Let us consider, here, a L-operator similar to the one of the quantum
Toda chain:

L[*]=_*&
d

dx
e&x

ex

0 & (102)

This can be seen as a generalization of the monodromy matrices (23) where
the m_m matrices A, B, C and D become operators which can only have
infinite dimensional representations. Let us introduce an ``inverse'' L-operator:

I(L)[*$]=_
0

e&x

ex

*$+
d

dx& (103)

and let us perform the products of these two L-operators:

L[*] } I(L)[*$]=_*&
d

dx
e&x

ex

0 & } _
0

e&x

ex

*$+
d

dx&=_1
0

N
1 &

where N=\*&
d

dx+ } ex+ex } \*$+
d

dx+ (104)
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32 The inverse scattering method on this model has been investigated in refs. 69 and 70. This
enables to introduce (see for instance page 197 in ref. 35) an auxiliary problem associated
with the 2_2 L-operator (101). For more details on the L-operators (or local transition
matrix) and the relations with inverse scattering (Lax pairs...) see for instance refs. 73
and 74, or pages from 187 to 235 in ref. 35.



or:

I(L)[*$] } L[*]=_
0

e&x

ex

*$+
d

dx& } _*&
d

dx
e&x

ex

0 &=_ 1
N$

0
1&

where N$=e&x } \*&
d

dx++\*$+
d

dx+ } e&x (105)

It is a straightforward calculation to see that the derivative operator d�dx
disappears in the off-diagonal N and N$ operators, and that N and N$
reduce to the operators of multiplication by the function (*$+*&1) } ex,
and (*$+*&1) } e&x, respectively. The operators N and N$ reduce to the
null operator for *$=1&*. Therefore one has the following result:

L[*] } I(L)[1&*]=I(L)[1&*] } L[*]=_1
0

0
1& (106)

As it should the left ``inverse'' coincides with the right ``inverse.'' Let us use
such inverse and combine it with the partial transposition t1 , previously
described. Let us now perform the partial transposition t1 which amounts
to permuting the two off-diagonal operators:

t1(L)[*]=_*&
d

dx
ex

e&x

0 & (107)

One easily finds, as a consequence of the nullity of two operators N1 and
N2 , when *$=&1&*:

N1=\*&
d

dx+ } e&x+e&x } \*$+
d

dx+ and

N2=ex } \*&
d

dx++\*$+
d

dx+ } ex

that the inverse of (107) reads:

I(t1(L))[*$]=_
0

ex

e&x

*$+
d

dx& where *$=&1&* (108)
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Let us perform, again, the partial transposition t1 on the previous L-operator:

t1(I(t1(L)))[*$]=_
0

e&x

ex

*$+
d

dx& (109)

The inverse of (109) reads:

I(t1(I(t1(L))))[*"]=_*"&
d

dx
e&x

ex

0 & (110)

with *"=&*$+1. Actually:

t1(I(t1(L)))[*$] } I(t1(I(t1(L))))[*"]

=_
0

e&x

ex

*$+
d

dx& } _*"&
d

dx
e&x

ex

0 &=_ 1
N3

0
1&

(111)
I(t1(I(t1(L))))[*"] } t1(I(t1(L)))[*$]

=_*"&
d

dx
e&x

ex

0 & } _
0

e&x

ex

*$+
d

dx&=_1
0

N4

1 &

where:

N3=e&x } \*"&
d

dx++\*$+
d

dx+ } e&x=(*"+*$&1) } e&x and

N4=\*"&
d

dx+ } ex+ex } \*$+
d

dx+=(*"+*$&1) } ex (112)

Combining this result, and the previous result (108), one gets that
I(t1(I(t1(L)))) has exactly the same form as L, but with * changed into *+2:

I(t1(I(t1(L))))[*]=L[*+2]=_(*+2)&
d

dx
e&x

ex

0 & (113)
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It1It1 is an infinite order transformation acting on the L-operator (102).
This provides a first, and very simple, example of rational Baxterisation of
the L-operator (102). The iteration of It1It1 yields a ``trajectory,'' in the
space of the L-operator (102), corresponding to a straight line: * � *+2.
It seems necessary, here, to perform (It1)2, instead of It1 , to preserve the
form of the L-operator. In fact one can only perform It1 if one recognizes
that (108) is like L(*+1), up to a transformation c } s which commutes
with the inversion I and with the partial transposition t1 :

_
0

ex

e&x

&1&*+
d

dx&=c \s \_*+1&
d

dx
e&x

ex

0 &++ (114)

where c and s are the two following transformations (U, V, W, T are any
operator):

c \_U
W

V
T&+=_T

V
W
U & and s \_U

W
V
T &+=_&U

W
V
T & (115)

Therefore It1 is associated with the shift * � *+1. One sees that * actually
plays the role of the spectral parameter for the Toda L-operator.

Many other examples, corresponding to differential operators and
L-operators, or local quantum Lax matrices associated with the XXX
quantum Hamiltonian, yield similar calculations: for instance, a very sim-
ple example of L-operator, associated with the discrete self-trapping model
(see for instance ref. 72) can easily be Baxterised, the calculations being
extremely similar to the one sketched in this section.

8.1. Let Us Baxterise Higher Derivatives

Let us consider a (slightly) more complicated example of Baxterisation
of differential operators. In the following we will denote by p the derivative
operator d�dx. More generally, let us consider the following L-operator:

LN=_A(0)(x)
C(x)

B(x)
0 & (116)

where A(0)(x) denotes the differential operator A0(x)+A1(x) } p+ } } } +
Am(x) } pm+ } } } +AN(x) } pN and where the two functions B(x) and C(x)
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are related by B(x) } C(x)=1. Let us first perform the partial transposition t1 :

t1(LN)=_A0(x)+A1(x) } p+ } } } +Am(x) } pm+ } } } +AN(x) } pN

B(x)
C(x)

0 &
(117)

Let us try to find the inverse of this L-operator. Let us denote A(1)(x)
another similar differential operator A� 0(x)+A� 1(x) } p+ } } } +A� m(x) } pm

+ } } } +A� N(x) } pN. It is straightforward to see that t1(LN) } I(t1(LN)) is the
identity matrix when I(t1(LN)) reads:

I(t1(LN))=_ 0
B(x)

C(x)
&A(1)(x)& (118)

with:

A(0)(x) } C(x)=C(x) } A(1)(x) (119)

The fact that the left inverse and the right inverse identify is just a conse-
quence of the fact that (119) is equivalent to B(x) } A(0)(x)=A(1)(x) } B(x)
when B(x) } C(x)=1. One easily sees that, up to the previous c and s trans-
formations, the infinite order transformation It1 reads:

I \t1 \_A(0)(x)
C(x)

B(x)
0 &++=c \s \_A(1)(x)

C(x)
B(x)

0 &++ (120)

where A(1)(x) is deduced from A (0)(x) by (119). From now on let us note
A� N , AN , C the functions A� N(x), AN(x) and C(x). We will denote C$, C"
and C (N ) the first, second and N-th derivatives of C(x). For N=3 the
transformation A(0)(x) � A(1)(x) reads:

C } A� 3=C } A3

C } A� 2=C } A2+3 } C$ } A3
(121)

C } A� 1=C } A1+2 } C$ } A2+3 } C" } A3

C } A� 0=C } A0+ } C$ } A1+C" } A2+C (3) } A3

Let us denote S1=C$�C, S2=C"�C and S3=C (3)�C. One can straight-
forwardly associate to transformation (121) a 4_4 matrix:

M=_
1
0
0
0

S1

1
0
0

S2

2S1

1
0

S3

3S2

3S1

1 & (122)
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The Baxterisation process corresponds to the iteration of this matrix. Note
that this iteration yields a simple group structure:

M n=_
1
0
0
0

n } S1

1
0
0

n } S2+n } (n&1) } S 1
2

2 } n } S1

1
0

n } S3+3 } n } (n&1) } S1S2+n } (n&1) } (n&2) } S 1
3

3 } n } S2+3 } n } (n&1) } S 1
2

3 } n } S1

1 &
(123)

If, instead of seeing I(t1(LN)) as an operator similar to LN , up to the
previous c and s transformations (115), one sees I(t1(LN)) as an operator
similar to LN , up to transformation c only, one associates to It1 the 4_4
matrix &M, instead of M, yielding to a (&1)n factor in front of (123). If,
similarly to the first Toda L-operator example, one just considers the itera-
tion of (It1)2, one does not have a (&1)n factor problem, but (123) is only
valid for n even. Note that the ``time reversal'' I } t1 � t1 } I corresponds to
the same transformation as (121), but where the function C(x) is changed
into the function B(x)=1�C(x). When C(x) is an exponential C(x)=er } x

the entries in the matrix M are not functions of x but numbers. For N=1
and C(x)=ex one recovers the previous Toda result associated to the 2_2
(shift) matrix:

M=_1
0

1
1& (124)

To sum up, transformation K� 2 is associated with matrix M2 (with M given
by (122)). We are thus reduced to the analysis of the iteration of M given by
(122). It is clear from (123) that the orbits of K� 2 in the ``huge'' functional
space (A0(x), A1(x), A2(x), A3(x)), correspond to a rational curve. This
rational curve corresponds to the rational parametrization (Baxterisation) of
(123) which consists in considering the integer n as a real (or complex) number.

Remark. It is worth noticing that all these Baxterisations of L-oper-
ators have been performed without using any Yang�Baxter (RLL=LLR)
hypothesis. These calculations are similar to the calculations on the sixteen
vertex model where the iteration of K� yields a foliation of the whole fifteen
dimensional space of the model in elliptic curves, beyond the Yang�Baxter
integrable cases.(34)

8.2. Some Exercises of Baxterisation

The previous simple heuristic calculations correspond to ``classical''
L-operators. Of course all these calculations can be generalized to more

688 Boukraa and Maillard



general L-operators, in particular more ``quantum'' L-operators (see in par-
ticular (125) and (127) below). We let the reader perform a few exercises
of Baxterisation.

v Show that the Baxterisation of an R-matrix and the Baxterisation of
a monodromy matrix, built with the same R-matrix (like the two site
monodromy matrix corresponding to the left figure (25)), yield the same
results. For instance the straight Baxterisation of the two sites monodromy
matrix of the sixteen vertex model also yields elliptic curves. This last example
corresponds to matrices A, B, C, and D in (23) and (24) being 4_4 matrices.
The parameter space of the (A, B, C, D)-matrix (see (23) and (24)) corre-
sponds to 32 homogeneous parameters. If the (A, B, C, D)-matrix corre-
sponds to a two sites monodromy matrix of the sixteen vertex model, these
32 parameters depend, in fact, on sixteen parameters, and are thus related
by quite involved algebraic relations. In practice it is almost impossible to
see that an (A, B, C, D)-matrix actually corresponds to a two sites mono-
dromy matrix of some ``underlying'' (sixteen vertex model) R-matrix. For-
tunately the Baxterisation procedure works and provides the same results
as the one for the ``underlying'' R-matrix, even if one has not been able to
see that such an ``underlying'' R-matrix exists on the model.

v Let us consider the six-vertex model and its N-site monodromy
matrix (see ref. 35, p. 255):

TN(*)=_AN(*)
CN(*)

BN(*)
DN(*)& (125)

As a consequence of the Yang�Baxter equations, the operators AN(*), BN(*),
CN(*) and DN(*) verify some quadratic relations like (see ref. 35, p. 255):

BN(*) } AN(+)

=b(*&+) } BN(+) } AN(*)+c(*&+) } AN(+) } BN(*)
(126)

c(*&+) } [CN(*), BN(+)]

=b(*&+) } AN(+) } DN(*)&AN(*) } DN(+),...

where b(*&+)=sin(2')�sin(*&++2') and c(*&+)=sin(*&+)�sin(*&
++2'). Show that the action of K� 2 (and not K� ) on the N-site monodromy
matrix TN(*) amounts to a simple shift of the ``spectral parameter'' *. Hint:
it is easy to see that the inversion relation corresponds to * � &*. The
difficult point is to show that the action of t1 on TN(*) is associated with:
* � 2'&*.
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v Let us recall the L-operator corresponding to the Sine�Gordon
model:(35)

L=_ u&

1�4m(*v�v+�*)
1�4m(v&�*&*v+)

u+ & (127)

where u\ and v\ are the Weyl operators: u\=e\i;�4p and v\=e\i;�2q.
The spectral parameter * is explicit here. Show that the inverse transforma-
tion I� , and the transformation K� 2, yield very simple multiplicative transfor-
mations on the spectral parameter *. In the classical limit this L-operator
becomes:

L=&i } _ &2i#?
1�4m(*e1�2i,&e&1�2i,�*)

1�4m(*e&1�2i,&e1�2i,�*)
2i#? & (128)

In this classical limit what means the inversion relation I� ?
v Is it possible to Baxterise the L-operator:

L=_
u+ y }

d
dy

&l

& y2 }
d

dy
+2ly

d
dy

u& y }
d

dy
+l& (129)

where one recognizes(75) the realization of the finite dimensional Lie

algebra sl@(2) in terms of differential operators:

e=
d

dy
, h=&2y }

d
dy

+2l, f = & y2 }
d

dy
+2ly (130)

What is the ``status'' of the u and l parameters from a Baxterisation point
of view: gauge parameters, spectral parameters...?

v Show that the Baxterisation of the R-matrix(76)

R=_
1
0
0

1&u

0
u
0
0

0
1&u

1
0

0
0
0
u& (131)

yields a finite order group: the inverse I� amounts to changing u into 1�u,
and transformation K� 2=t1 } I� } t1 } I� leaves the R-matrix (131) invariant:
K� 2(R)=R.

690 Boukraa and Maillard



v Show that the Baxterisation of the R-matrix(77)

R(q)=_
- q

0
0
0

0
1
0
0

0
(q&1)�- q

1
0

0
0
0

- q&
yields R(q, n)=_

- q
0
0
0

0
1
0
0

0
(q&1) qn&1�2

1
0

0
0
0

- q& (132)

Hint: the inverse of R(q) is R(1�q) but K� 2n(R(q))=R(q, n).

v Recalling that the quantum group SLq(2) is a Hopf algebra with the
antipode S given explicitly by:(78)

S(T )=S _A
C

B
D&=_ D

&qC
&B�q

A & (133)

show that the antipode S plays exactly the role of the inverse in the
Baxterisation procedure. One will use the relations:

CD&qDC=0, qBA&AB=0
(134)

AD&DA=\q&
1
q+ } BC, BC=CB

Hint: calculate the product T } S(T ) and introduce the quantum determi-
nant detq (T )=AD&qBC. This gives:

T } S(T )=_A
C

B
D& } _ D

&qC
&B�q

A &=detq(T ) } _1
0

0
1& (135)

Introducing transformation t1 :

t1(T )=t1 _A
C

B
D&=_A

B
C
D& (136)

let us consider the infinite dihedral group generated by these two involu-
tions S and t1 , or just the iteration of transformation t1 } S. What is the
``quantum group meaning'' of this infinite dihedral group?
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v Let us recall the L-operator corresponding to the Liouville model on
a lattice:(78)

L=_- 1+e2Q+ih eP

eQ

eQ

e&P
- 1+e2Q+ih& (137)

where P and Q verify the Heisenberg commutation relation [P, Q]=ih, or
the Hermann�Weyl relation ePeQ=eiheQeP. Try to Baxterise it, or remark
that this problem reduces to the previous Hopf algebra, with a quantum
determinant equal to 1.

v Is it possible to Baxterise the universal R-matrix of Uq(sl2) which
corresponds to the formal series:(78)

R= :
�

k=0

qk(k&1)�2 (q&q&1)k

[k]!
q1�2H�HEk�F k (138)

9. CONCLUSION

The Baxterisation procedure is very efficient, and powerful, and is not
restricted to any Bethe Ansatz framework, or any particular ``mathematical
object:'' one can actually Baxterise R-matrices, monodromy matrices,
L-operators, quantum Hamiltonians,... in order to see the spectral parameter,
and the integrability, become crystal clear. Typically, all the calculations
sketched here, can be performed for R belonging to a quite general algebra
R=�i ci } Ai , the generators Ai being not necessarily associated with semi-
simple Lie algebras: they can, for instance, be elements of a Bose�Mesner
algebra(80) associated with distance regular graphs...The Baxterisation pro-
cedure corresponds to very simple calculations, namely performing the
inverse of a matrix, or of some element of an algebra, and performing per-
mutations of the entries of a matrix, and combining these two transforma-
tions to get a (generically) infinite order (birational, polynomial) transfor-
mation one studies as a discrete dynamical system. The Baxterisation proce-
dure is a very powerful tool enabling to find, or simply analyse, Yang�
Baxter integrable models. It is probably the quickest, and most powerful,
way to get the solution (parametrization) of the Yang�Baxter equations,
even if this parametrization is extremely complicated. Actually, the problem
of the parametrization of the Yang�Baxter equations is often a quite dif-
ficult, or subtle, one. Recalling the free-fermion condition for the asym-
metric eight vertex model, it is not always clear to see if a variable is a
spectral parameter, an invariant (like the modulus of elliptic functions), or
simply a gauge variable(81, 82) (see also ref. 83). A variable can be seen as a
spectral parameter for a row-to-row transfer matrix, and as an invariant for
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the column-to-column transfer matrix, looking ``like a gauge variable,'' but
corresponding, in fact, to symmetries like (34)... The Baxterisation proce-
dure is a very efficient method to clarify these ``subtleties.''

It is striking to note that the Baxterisation procedure actually provides
results beyond the Yang�Baxter integrable framework. The canonical elliptic
parameterization of the sixteen vertex model is such a good example.(34)

What does the integrability of discrete symmetries of the parameter space of
the model mean outside the Yang�Baxter integrable framework?(84) Could it
be possible that it may help to solve the model in the absence of Yang�Baxter
integrability? Is integrability restricted to Yang�Baxter integrability? What
is integrability? In our introduction we have recalled that the Yang�Baxter
structure is a sufficient condition for the commutation of qN_qN transfer
matrices (for any N ), which is a fundamental property for the integrability
of the model. However, if one just wants to calculate the partition function
of the model (largest eigenvalue), one does not need such commutation
property in the whole qN dimensional space: if the transfer matrix can be
block diagonalized, the commutation in some block including the eigenvec-
tor corresponding to the largest eigenvalue, is sufficient to calculate exactly
the partition function per site. The exact calculation of the partition func-
tion on the so-called ``disorder solutions''(85) is such an example: the disor-
der solution ``calculability'' is not a Yang�Baxter integrability.(86) Other
examples exist in the literature called ``quasi-integrability:'' they correspond
to Hamiltonians for which one can only find exactly the ground state and
the corresponding eigenvalue.

Along this line let us also recall the ideas developed by V. Jones on
planar algebras(87) where he considers local relations, similar to the
ABC=CBA Yang�Baxter relations, that could be sufficient to calculate
global objects like generating functions equivalent to partition functions. He
introduces, for instance, deformations of Yang�Baxter relations, like
ABC=CBA+S, where S is ``something'' with ``at most'' two R matrices
(see ref. 87). In such a framework one does not have a commutation of
transfer matrices anymore. One could easily imagine to Baxterise the
ABC=CBA+S relation in a similar way it can be done for the ABC=CBA
Yang�Baxter relations.(4, 5) One could thus imagine the following situation:
a parameterization of the deformed Yang�Baxter relation in terms of elliptic
curves, no Yang�Baxter integrability stricto sensu, but, may be, a possibility
to calculate exactly the partition function per site!

Leaving these speculative ``dreams'' let us just underline the fact that,
beyond the Yang�Baxter framework, the Baxterisation procedure has
already provided a very large number of new exact results for lattice
models in statistical mechanics(88, 89) and, more generally, for discrete
dynamical systems.(90, 91)
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APPENDIX A. POLYNOMIAL REPRESENTATIONS OF
* � M } *

For N=7, 11, one has a completely similar structure than the one
depicted in Section 6, for the polynomial representation of the multiplica-
tion of the shift by N, namely (Jx , Jy , Jz) � (J (N )

x , J (N )
y , J (N )

z ) where
J (N )

x =Jx } P (N )
x (Jx , Jy , Jz) (see (56)).

For N=7 polynomial P (7)
x (Jx , Jy , Jz) reads:

P (7)
x (Jx , Jy , Jz)

=7J y
24J z

24&(J z
2&J y

2)12 J x
24&28Jy

22J z
22(J z

2+J y
2) J x

2

&14J y
20J z

20(3J y
4+3J z

4&14J z
2J y

2) J x
4

+4J y
18J z

18(J z
2+J y

2)(121J y
4&250J z

2J y
2+121J z

4) J x
6

&3J y
16J z

16(437J z
4+726J z

2J y
2+437J y

4)(J z
2&J y

2)2 J x
8

&28J z
6J y

6(J z
2+J y

2)(13J y
4+38J z

2J y
2+13J z

4)(J 2
z&J 2

y)6 J x
18

+24J y
14J z

14(J z
2+J y

2)(75J y
4+106J z

2J y
2+75J z

4)(Jz
2&J y

2)2 J x
10

+2J z
4J y

4(59J z
8+332J z

6J y
2+626J z

4J y
4

+332J z
2J y

6+59J y
8)(J z

2&J y
2)6 J x

20

&4J z
2J y

2(J y
2+3J z

2)(3J y
2+J z

2)(J z
2+J y

2)

_(J y
4+6J z

2J y
2+J z

4)(J 2
z&J 2

y)6 Jx
22

&12J y
12J z

12(105J z
8+420J z

6J y
2+422J z

4J y
4

+420J z
2Jy

6+105J y
8)(J 2

z&J 2
y)2 J x

12

+8J z
10J y

10(J z
2+J y

2)(21J y
8+420J z

2J y
6

&50J z
4J y

4+420J z
6J y

2+21J z
8)(J 2

z&J 2
y)2 J x

14

+J z
8J y

8(7J y
4+7J z

4&30J z
2J y

2)(63J y
8

+84J z
2J y

6&38J z
4J y

4+84J z
6J y

2+63J z
8)(J 2

z&J 2
y)2 J x

16 (139)

The modulus (51) is invariant by the polynomial transformation (Jx , Jy , Jz)
� (J (7)

x , J (7)
y , J (7)

z ), corresponding to the multiplication of the shift by seven.
The multiplication of the shift by eleven has a polynomial represen-

tation (Jx , Jy , Jz) � (J (11)
x , J (11)

y , J (11)
z ) satisfying (56) for N=11, where

P(11)
x (Jx , Jy , Jz) is a homogeneous polynomial of degree 120 sum of 496

monomial expressions:
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P (11)
x (Jx , Jy , Jz)=&30045015J 40

y J 20
z J 60

x +2035800J 46
y J 14

z J 60
x

+142506J 50
y J 10

z J 60
x &27405J 8

y J 52
z J 60

x

+54627300J 38
y J 22

z J 60
x &435J 56

z J 4
yJ 60

x

+54627300J 22
y J 38

z J 60
x + } } } (140)

The actual expression of P (11)
x (Jx , Jy , Jz) will be given elsewhere.

When N is not a prime number one has slightly modified results: one
does not have (56) anymore. Actually, the polynomial representation of the
multiplication of the shift by six can be obtained in many different ways,
namely substituting J (2) in J (3), or J (3) in J (2), or by various eliminations
between various biquadratic curves 1i . The result reads (Jx , Jy , Jz) �
(J (6)

x , J (6)
y , J (6)

z ) where:

J (6)
x =J (2)

x } P� (6)
x (Jx , Jy , Jz)

J (6)
y =J (2)

y } P� (6)
y (Jx , Jy , Jz)=J (2)

y } P� (6)
x (Jy , Jz , Jx) (141)

J (6)
z =J (2)

z } P� (6)
z (Jx , Jy , Jz)=J (2)

z } P� (6)
x (Jz , Jx , Jy)

such that J (6)
y (Jx , Jy , Jz)=J (6)

x (Jy , Jz , Jx) and J (6)
z (Jx , Jy , Jz)=J (6)

x (Jz , Jx , Jy).
The P� (6)'s and the J (6)'s are functions of J 2

x , J 2
y and J 2

z . One also has
J (6)

x (Jx , Jy , Jz)=J (6)
x (Jx , Jz , Jy), J (6)

y (Jx , Jy , Jz)=J (6)
y (Jz , Jy , Jx), J (6)

z (Jx , Jy , Jz)
=J (6)

z (Jy , Jx , Jz), and P� (6)
x (Jx , Jy , Jz)=P� (6)

x (Jx , Jz , Jy), P� (6)
y (Jx , Jy , Jz)=

P� (6)
y (Jz , Jy , Jx), P� (6)

z (Jx , Jy , Jz)=P� (6)
z (Jy , Jx , Jz).

All these expressions can thus be deduced from P� (6)
x (Jx , Jy , Jz):

P� (6)
x (Jx , Jy , Jz)

=J y
16J z

16&8J y
14J z

14(J z
2+J y

2) J x
2

+4J y
12J z

12(&10J z
2J y

2+7J y
4+7J z

4) J x
4

&56J z
10J y

10(J z
2+Jy2)(Jz&Jy)2 (Jz+Jy)2 J x

6

+2J z
8J y

8(35J z
4+114J z

2J y
2+35J y

4)(Jz&Jy)2 (Jz+Jy)2 J x
8

&8J z
6J y

6(J z
2+J y

2)(7Jy4+18J z
2J y

2+7J z
4)(Jz&Jy)2 (Jz+Jy)2 J x

10

+4J z
4J y

4(7J y
4+J z

4)(Jy
4+7J z

4)(Jz&Jy)2 (Jz+Jy)2 J x
12

&8J z
2J y

2(J z
2+J y

2)(Jz&Jy)6 (Jz+Jy)6 J x
14

+(J z
4+14J z

2J y
2+J y

4)(Jz&Jy)6 (Jz+Jy)6 J x
16 (142)

Note that J (6)
x is a homogeneous polynomial expression of degree 36.
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Similarly, the polynomial representation of the multiplication of the
shift by nine reads (Jx , Jy , Jz) � (J (9)

x , J (9)
y , J (9)

z ) where:

J (9)
x =J (3)

x } P� (9)
x (Jx , Jy , Jz)

J (9)
y =J (3)

y } P� (9)
y (Jx , Jy , Jz)=J (3)

y } P (9)
x (Jy , Jz , Jx) (143)

J (9)
z =J (3)

z } P� (9)
z (Jx , Jy , Jz)=J (3)

z } P� (9)
x (Jz , Jx , Jy)

The expression of P� (9)
x (Jx , Jy , Jz) will be given elsewhere. It is, again,

a function of J 2
x , J 2

y and J 2
z . It is the sum of 190 monomial expressions of

degree 72, J (9)
x being a homogeneous polynomial expression of degree 81.

APPENDIX B. FINITE ORDER CONDITIONS

It can be shown that the points of the Baxter model on the algebraic
varieties:

V (3)(Jx , Jy , Jz)=Jx Jy+JzJx+JzJy

V� (3)
z (Jx , Jy , Jz)=&JxJy+JzJx+JzJy

are actually such that K6(R)=` } R. One has the following factorization
property:

V (3)(J (2)
x , J (2)

y , J (2)
z )

=V (3)(Jx , Jy , Jz) } V� (3)
x (Jx , Jy , Jz) } V� (3)

y (Jx , Jy , Jz) } V� (3)
z (Jx , Jy , Jz)=0

(144)

where V� (3)
x (Jx , Jy , Jz)=V� (3)

z (Jy , Jz , Jx) and V� (3)
y (Jx , Jy , Jz)=V� (3)

z (Jz , Jx , Jy).
One has the relation:

V� (3)
z (J (2)

x , J (2)
y , J (2)

z )&P (3)
z (Jx , Jy , Jz)=0 (145)

Note that the points of the Baxter model on the algebraic varieties
P(3)

x (Jx , Jy , Jz)=0, or P (3)
y (Jx , Jy , Jz)=0, or P (3)

z (Jx , Jy , Jz)=0, are such
that K12(R)=` } R. Relation (145) is in agreement with the fact that
(Jx , Jy , Jz) � (J (2)

x , J (2)
y , J (2)

z ) is a representation of the shift doubling. The
points of order six (namely K6(R)=` } R) correspond to (144), their image
by the shift doubling (Jx , Jy , Jz) � (J (2)

x , J (2)
y , J (2)

z ) giving P (3)
x (Jx , Jy , Jz) }

P(3)
y (Jx , Jy , Jz) } P (3)

z (Jx , Jy , Jz)=0, together, of course, with (144).
Let us note that the points of the algebraic variety V� (3)

z (Jx , Jy , Jz)=0
are (projectively) of order three for the Baxter model: K3(R)=` } R. The
points of the Baxter model on the variety:
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V (5)
y (Jx , Jy , Jz)=J 2

z JxJ 3
y&2J 2

z J 2
xJ 2

y+J 2
z J 3

xJy+JzJ 2
xJ 3

y

&JzJ 3
xJ 2

y&J 3
xJ 3

y&J 3
z Jx J 2

y

+J 3
z J 2

xJy+J 3
z J 3

x&J 3
xJ 3

y=0 (146)

are of order five K5(R)=` } R. The points of the Baxter model on the
algebraic variety:

V� (5)
y (Jx , Jy , Jz)=V (5)

y (Jy , Jx , Jz)=J 2
z J 3

xJy&2J 2
z J 2

xJ 2
y+J 2

z JxJ 3
y+JzJ 3

xJ 2
y

&JzJ 2
xJ 3

y&J 3
z J 3

x&J 3
z J 2

xJy+J 3
z JxJ 2

y+J 3
z J 3

y&J 3
xJ 3

y=0

(147)

are of order ten: K10(R)=` } R. The point of the Baxter model on the
variety P (5)

x (Jx , Jy , Jz)=0, P (5)
y (Jx , Jy , Jz)=0, or P (5)

z (Jx , Jy , Jz)=0, are of
order twenty: K20(R)=` } R. Let us note that:

V (5)
y (J (2)

x , J (2)
y , J (2)

z )+P (5)
y (Jx , Jy , Jz)=0

(148)
V� (5)

y (J (2)
x , J (2)

y , J (2)
z )+P (5)

x (Jx , Jy , Jz)=0

which is in agreement with the fact that (Jx , Jy , Jz) � (J (2)
x , J (2)

y , J (2)
z )

represents the shift doubling.

Remark. Relation (148) is in agreement with the shift doubling,
however one seems to have an apparent contradiction with previous rela-
tions. The points of (146), namely V (5)

y (Jx , Jy , Jz)=0 being of order five,
one expects that their image by the shift doubling will give points of order
ten, like (147), and not points of order twenty, like P (5)

y (Jx , Jy , Jz)=0.
In fact, this algebraic variety is an order five algebraic variety only when
restricted to the Baxter model. For the sixteen vertex model one can actually
show that V (5)

y (Jx , Jy , Jz)=0 and V� (5)
y (Jx , Jy , Jz)=0, are (codimension-

one) algebraic varieties of order ten, the algebraic varieties of order five
being higher codimension algebraic varieties.
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